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1. Introduction. The study of regular skew polyhedra was initiated in 1926 
by Petrie's discovery of two infinite polyhedra in Euclidean three-space Es 

which were free of false vertices; the only other regular skew polyhedron 
in E3 was found by Coxeter (1, pp. 33-34). The simplest of these is denoted 
{4, 6 | 4} and is derived from the space-filling of cubes by omitting half the 
faces. Each square face has four adjoining faces inclined at 90° to the given face 
(Fig. 1 ). At any vertex there are six faces ; the vertex figure is a regular skew 
hexagon, the Pétrie polygon of a regular octahedron (6, p. 24). Figure 2 shows 
the arrangement of faces at a vertex; the dotted lines indicate the vertex figure. 

A polygon is said to be regular if it possesses a symmetry operation cyclically 
permuting its vertices, and therefore also its sides. For a regular plane p~gon, 
this symmetry operation is a rotatory reflection, involving rotation through the 
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angle ir/p and reflection in a plane perpendicular to the axis of rotation (5, 
p. 99). Since the square of this rotatory reflection is a rotation through the angle 
2ir/p, this regular finite skew polygon is a 2^-gon whose vertices lie alternately 
on two circles which reflect into each other in a plane perpendicularly bisecting 
the line segment joining their centres. The sides of such a polygon are thus the 
lateral edges of an antiprism. By an antiprism we understand a polyhedron 
whose faces are two regular {p) 's and 2p isosceles triangles (5, p . 149). 

A polyhedron is defined as a connected set of ordinary plane polygons, such 
that every side of each polygon belongs also to just one other polygon, and the 
polygons surrounding each vertex form a single circuit. Defining the vertex 
figure of a polyhedron as the polygon formed by the vertices of the polyhedron 
which are joined to a specific vertex by edges, we say a polyhedron is regular 
if its faces and vertex figures are regular polygons (6, p. 16). If these regular 
vertex figures are plane polygons, we have an ordinary regular polyhedron] 
if they are skew polygons, we have a regular skew polyhedron (or r.s.p.). 

A regular polyhedron may also be defined as a polyhedron possessing two 
particular symmetry operations: one, say R, which cyclically permutes the 
vertices of any face, and another, say 5, which cyclically permutes the faces 
that meet at any vertex of this face. These two symmetry operations generate 
a group which is transitive on the vertices, on the edges, and on the faces. For 
an ordinary regular polyhedron, S is a rotation; for an r.s.p., 5 is a rotatory 
reflection. 

Consider an r.s.p. in hyperbolic three-space H3. Although it divides space into 
two parts, an "inside" and an "outside," these are interchanged by R and S, 
so that they are alike. Hence the polyhedron must be infinite. Since the vertex 
figure is a skew polygon, the faces adjoining a given "horizontal" face are 
alternately "above" and "below" it, and so R is also a rotatory reflection. 

As in Euclidean three-space (1, p. 38), it can be shown that each r.s.p. 
determines a plane regular polygon, called a "hole," which may be described 
as a path along edges of the r.s.p. such that at the end of each edge we leave 
two faces on, say, the left. That is, the edges to be selected are not adjacent 
but alternate. 

The symbol {p, q\r} will be used to denote an r.s.p. uniquely defined by 

p, the number of vertices or edges of a face, 
q, the number of edges or faces at a vertex, 
r, the number of vertices or edges of a hole. 

We remark at this point that p and q are even. For, since R is a rotatory reflection, 
its period is even. But R cyclically permutes the p edges of a face, and so its 
period is p. Thus, p is even. Similarly S, cyclically permuting the q faces at a 
vertex, is a rotatory reflection, and so q is even. 

2. Regular skew polyhedra and associated honeycombs. Since the 
p and g of {p, q\r} are both even, we are interested only in finding the values of 
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/, m, r for which {21, 2m\r) is an r.s.p. in H3. Consider such an r.s.p. If each hole 
{r} is considered as a face, we have a honeycomb whose faces are {2/}'s and 
{r}'s. If r = 21, the faces are of one type only, and we shall see that the honey
comb is then regular in all cases but one. Moreover, the honeycomb obtained 
from {2/, 2m\r] by "filling in" the holes must have, as vertex figure, an anti-
prism whose lateral edges form a skew 2m-gon, the vertex figure of the r.s.p. 

I t is necessary at this point to place a slight restriction on the honeycombs we 
shall consider. Only those honeycombs having cells which are inscribed in 
finite spheres, or horospheres, or both, will be considered. Thus we are excluding 
honeycombs with cells inscribed in equidistant surfaces. Since the geometry 
of an equidistant surface is hyperbolic (7, p. 252), this means we are excluding 
honeycombs whose cells are hyperbolic tessellations, of which there are infinitely 
many (3, p. 156). Such honeycombs are very difficult to deal with and are of 
minimal interest, since their fundamental tetrahedra have faces which are 
ultraparallel. 

In E3, it can be shown that an r.s.p. {21, 2m\r\ determines a tetrahedron 
bounded by planes h, W, k, W whose dihedral angles are 

(hk) = (WW) = TT/2, 

(hW) = T/1, 

(kW) = ir/m, 

(KW) = (Wk) = ir/r 

(1, p. 39). I t can be seen easily that the argument used is an absolute one, and 
so is valid in H3. This tetrahedron is also the fundamental region represented by 
the graph 

/ 
?—~f 

r \ r 

1 • 
m 

The dots represent the four planes of the tetrahedron, and a link is drawn 
between two dots whenever the corresponding planes are not perpendicular. 
Each link is marked with a number n to indicate that the dihedral angle between 
the two planes is w/n, except n = 3 which is regularly omitted. This graph also 
represents the symmetry group which is generated by reflections in these 
planes (2, pp. 382-387). 

The honeycomb with antiprismatic vertex figure which is derived from this 
graph is 

/ 
&——G 

r \r 

é i 
m 



1182 CYRIL W. L. GARNER 

Its cells are {r, m}Js and /{/, r} 's with 2 of the former and 2m of the latter at 
each vertex. (See (2, pp. 400-404) for a thorough discussion of these graphs.) 
The faces of this honeycomb are then {r} 's and {21} 's; the vertex figures of these 
faces are, respectively, the basal and lateral edges of the antiprismatic vertex 
figure of the honeycomb. Thus by omitting the r-gonal faces, we derive the 
r.s.p. {21, 2rn\r}. 

Some reductions of this honeycomb are possible. If m = 2, the honeycomb 
becomes 

/ 

é é 
• CD O 

r I r 

or h,i{r, /, r) (4, p. 70), a honeycomb of t{l, r} 's, four at each vertex. 
If / = 2 and so m ^ 2, the honeycomb becomes 

= o-
m 

m 

or t0tz{r, m, r] (4, p. 70), a honeycomb of {r, w}'sand t{2, r}'s or r-gonal prisms, 
with 2 of the former and 2m of the latter at each vertex. 

The only other possible reduction occurs when r = 21 and m = 2 or 3. 
The cell t{l, r] now becomes t{l, 21} = {21, 3}. For example, when we truncate 
{3, 6} (Fig. 3), the triangular faces become {6} 's and about each original vertex 
there is now a {6}. Since the general t{p, q] has two {2^}'s and one {q} at each 
vertex, /{3, 6} has three {6}'s at each vertex and so is a {6, 3}. Figure 4 shows 
/{3, 6} with the shaded hexagons indicating those replacing the vertices of the 
original {3, 6}. 

FIGURE 3 FIGURE 4 
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Thus, when m = 2, 

21 I 2/ 

represents a honeycomb whose cells are {21, 3}'s, four at a vertex, that is, the 
regular honeycomb {21, 3, 3} or 

2/ 

If, however, m — 3, the two types of cells {r, m\ and t{l, r] both become 
{21, 3} 's, and there are now eight at a vertex. Thus 

I 

2/ 21 

is the regular honeycomb {21, 3, 4} or 

-# • 
2/ 4 

An important restriction on /, rn, r for the existence of the tetrahedron 

in Hz is that the triangles 

• é 
m 

" • and 
m I r 

must be spherical or Euclidean; that is, 

(1) (Z - 2)(r - 2 ) < 4 and (r - 2) (m - 2) < 4 

(5, pp. 62 and 153); for then {/, r) and {r, m] are regular polyhedra or "infinite 
regular polyhedra," and not hyperbolic tessellations. 

3. Enumeration of regular skew polyhedra in hyperbolic three-space. 
We have seen that the general r.s.p. {21, 2m\r) is derived from the honeycomb 

/ 

m 
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In Table I at the end we list 21 r.s.p. which are thus derived (with I and w ^ 2 ) . 
From the honeycombs whose graphs are reduced from the above by setting 

m = 2, 

• o o • 
r I r 

we derive the r.s.p. {2/, 4|r}. Five r.s.p. of this type are listed in Table I. Since 
the graphs 

• • • • 
P a r 

represent the groups from which the regular honeycomb {p, q, r) are derived 
and since we know there are only five regular honeycombs {p, q, r] in H3 with 
p = r (3, pp. 157-158}, there can be no more r.s.p. of this type. 

The honeycombs represented by the next reduction (1 = 2) are 

o • • o 
r m r 

and the r.s.p. derived from them are {4, 2m\r}. Again there are exactly five 
groups from which honeycombs of this type are derived. The five r.s.p. corre
sponding to them are listed in Table I. 

Whenr = 21 and m = 2, 

o—-% • • 

2/ 

yields the r.s.p. {21, 4|2Z} and the vertex figure is a regular skew quadrilateral, 
the lateral edges of a regular tetrahedron, for the honeycomb is regular. The 
only honeycomb of this form, {6, 3, 3}, yields the r.s.p. {6, 4|6}. This, however, 
has already been derived from 

• o © # 
r l r 

with r = 6 and I = 3; for the cells, t{l, r) are then /{3, 6} = {6, 3}. 
Finally, if r = 21 and m = 3, the honeycomb is 

o • • • 
21 4 

or {2/, 3, 4}, and the r.s.p. derived from it is {21, 6|2Z}. The vertex figure is a 
regular skew hexagon, the Pétrie polygon of a regular octahedron. Thus the 
arrangement of the 2Z-gonal faces of this r.s.p. at a vertex is very like that of the 
Euclidean {4, 6|4} described at the beginning of this paper. 

The only such honeycomb is {6, 3, 4} or 

o • • • 
6 4 
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yielding the r.s.p. {6, 6|6}. This has already been derived from the honeycomb 

for then all the cells are {6, 3} 's and there are eight at a vertex. 
To justify the assertion that there are no more r.s.p. in H3, consider the 

integral solutions of the inequalities (1) for the I, m, and r of {2/, 2m\r}. We 
need not allow I or m to take the improper value 2, for we have already seen that 
we have all the r.s.p. in these cases. The only r.s.p. admitted by the inequalities 
not already listed in Table I is {6, 6|3}, and this is an r.s.p. in E3 (1, p. 40). 
Thus we can state: 

In H3 there are exactly 32 regular skew polyhedra which are derived from 
honeycombs whose cells and vertex figures are not inscribed in equidistant sur
faces. They are of three types, depending on the kind of honeycomb from which 
they are derived. Table I lists these regular skew polyhedra and their associated 
honeycombs. 

TABLE I 

1. Honeycomb 

es: 
!8,8|31, 
!6, 6|51, 
{6, 8|41, 
{6,6161, 

• 
r 

es: 
{10,4|3j , 

<; 

r 
? — s 
1 i 

r 

> 

! 8, 6|3j, 
{ 8, 10|3J, 
{12, 6|3J, 
{10, 12|3i, 

• (1*2) 

!12,4|3) , 

) 

{4, 12|3), 

m *2) 

R.S.P. 
Individual cas 
{10, 613}, 
{10, 10|3|, 
{12, 8|3| , 
{12, 12|3}, 

2. Honeycomb 

R.S.P. 
Individual cas 
|6 ,4 |51, 

3. Honeycomb 

R.S.P. 
Individual cas 
!4,6|51, 

es: 
!8,8|31, 
!6, 6|51, 
{6, 8|41, 
{6,6161, 

• 
r 

es: 
{10,4|3j , 

{21, 2» 

{t 

a 
{< 
{j 
[t 

-Q ( 

I 

{21, 4 | 

{< 

m 
i\r] 

Ï, 8|3 
Ï, 6|4 
5, 12|3 
i, 6|4 
\ 8|4) 

r 

> 

! 8, 6|3j, 
{ 8, 10|3J, 
{12, 6|3J, 
{10, 12|3i, 

• (1*2) 

!12,4|3) , 

) 

{4, 12|3), 

! 6, 10|3), 
{10, 8|31, 
{ 8, 12|31, 
(12, 10131, 

R.S.P. 
Individual cas 
{10, 613}, 
{10, 10|3|, 
{12, 8|3| , 
{12, 12|3}, 

2. Honeycomb 

R.S.P. 
Individual cas 
|6 ,4 |51, 

3. Honeycomb 

R.S.P. 
Individual cas 
!4,6|51, 

es: 
!8,8|31, 
!6, 6|51, 
{6, 8|41, 
{6,6161, 

• 
r 

es: 
{10,4|3j , 

{21, 2» 

{t 

a 
{< 
{j 
[t 

-Q ( 

I 

{21, 4 | 

{< 

r 

r) 

5, 4|6| , 

r 

> 

! 8, 6|3j, 
{ 8, 10|3J, 
{12, 6|3J, 
{10, 12|3i, 

• (1*2) 

!12,4|3) , 

) 

{4, 12|3), 

{8,4|4j 

R.S.P. 
Individual cas 
{10, 613}, 
{10, 10|3|, 
{12, 8|3| , 
{12, 12|3}, 

2. Honeycomb 

R.S.P. 
Individual cas 
|6 ,4 |51, 

3. Honeycomb 

R.S.P. 
Individual cas 
!4,6|51, 

r 

ÎST 

{4, 1013}, 

m r 
{4, 2m\r} 

{4, 6)6}, 

r 

> 

! 8, 6|3j, 
{ 8, 10|3J, 
{12, 6|3J, 
{10, 12|3i, 

• (1*2) 

!12,4|3) , 

) 

{4, 12|3), {4, 8|4=}. 

It is interesting to note that the honeycomb associated with {4, 8|4} is not 
regular, even though its faces are all regular quadrilaterals. For the honeycomb 
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has, as cells, Euclidean tessellations {4, 4} and 4-gonal prisms, or hexahedra, 
{4,3!. 
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