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PREFACE

THE object and plan of this book are explained in the
Introduction (page'16). I had hoped to give some account
of the recent literature, but this would have delayed work
that has already taken several years. I have prepared a
list of technical terms as found in a few of the more
familiar writings, very incomplete, and, I fear, not with-
out errors. The list méy be of service, however, to those
who wish to consult the authors referred to; it will also
indicate something of the confusion that exists in a subject
whose nomenclature has not become fixed. It has been
necessary for me to introduce a considerable number of
terms, but most of these have been formed in accordance
with simple or well-established principles, and no attempt
has been made to distinguish them from the terms that
have already been used.

I am indebted to the kindness of Mr. George A. Plimp-
ton of New York for an opportunity to examine his copy
of Rudolph’s Coss referred to on page 2. I am also under
many obligations to Mrs. Walter C. Bronson of Providence,
to Mr. Albert A. Bennett, Instructor at Princeton Univer-
sity, and to my colleagues, Professors R. C. Archibald
and R. G. D. Richardson, from all of whom I have re-
ceived valuable criticisms and suggestions. Many of the
references in the first four pages were found by Professor
Archibald; several of these are not given in the leading
bibliographies, and the reference to Ozanam I have not
seen anywhere.

HENRY P. MANNING.
PROVIDENCE,

July, 1914.
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INTRODUCTION

THE geometry of more than three dimensions is entirely
a modern branch of mathematics, going no farther back
than the first part of the nineteenth century. There are,
however, some early references to the number of dimensions
of space.

In the first book of the Heaver of Aristotle (384-322
B.C.) are these sentences: ‘‘ The line has magnitude in one
way, the plane in two ways, and the solid in three ways,
and beyond these there is no other magnitude because the
three are all,”’ and ‘‘ There is no transfer into another kind,
like the transfer from length to area and from area to a
solid.”* Simplicius (sixth century, A.n.) in his Commen-
taries says, ‘‘ The admirable Ptolemy in his book On Dis-
tance well proved that there are not more than three dis-
tances, because of the necessity that distances should be
defined, and that the distances defined should be taken
along perpendicular lines, and because it is possible to take
only three lines that are mutually perpendicular, two by
which the plane is defined and a third measuring depth;
so that if there were any other distance after the third it
would be entirely without measure and without definition.
Thus Aristotle seemed to conclude from induction that
there is no transfer into another magnitude, but Ptolemy
proved it.” §

" * Aristoteles, De Caelo, ed. Prantl, Leipzig, 1881, 268q, 7 and 30.

1 Simplicii in Aristotelis De Caelo Commentaria, ed. Heiberg, Berlin, 1894, 74,
33. Ptolemy lived about 150 A.D. The book on distance, wepi &iacréoews, is lost, and
with it Ptolemy’s “ proof ” except so far as it may be reproduced in the above quo-
tation from Simplicius.

B I



2 INTRODUCTION

There is also in the early history of algebra a use of terms
analogous to those derived from the plane and solid geom-
etry, but applicable only to geometry of more dimensions.
With the Greeks, and then in general with the mathe-
maticians that came after them, a number was thought
of as a line (of definite length), the product of two numbers
as a rectangle or plane, and the product of three numbers
as a parallelopiped or solid; or, if the numbers were equal,
the product of two was a square and of three a cube. When
they began to study algebra, other terms were required
for the higher powers, and so in Diophantus (third century)
we find square-square, square-cube, and cube-cube* In
later times there was a variation in the use of these terms.
Thus the square-cube came to mean the square of the cube,
or sixth power, while with Diophantus it means the square
times the cube, or fifth power. This change required the
introduction of new terms for powers of prime orders, and,
in particular, for the fifth power, which was finally called
a sursolid.t The geometrical conception of equations
and the geometrical fgrms of their solutions{ hindered

* Cantor, Vorlesungen siber Geschichte der Mathematik, vol. 1, 3d ed., Leipzig,
1907, P. 470.

t In the edition of Rudolph’s Coss (algebra) revised by Stifel (Kdnigsberg, 1553,
described by David Eugene Smith in Rara Arithmetica, Boston, 1908, p. 258) Sur-
solidum denotes the fifth power, Bsursolidum the seventh power, and so on (Part I,
chap. s, fol. 63). Paciuolo (about 1445-1514) in his Summa de Arithmetica Geo-
metria Proportioni et Proportionalita, printed in 1494, uses the terms primo relato and
secundo relato (Cantor, Vorlesungen, etc., vol. I1, 2d ed., 1900, p. 317). On the other
hand, Vieta (1540-1603) follows Diophantus. He expresses all the powers above
the third by compounds of guadrato and cubo, cubo-cubo-cubus being the ninth power
(Francisci Viet@ opera mathematica, Leyden, 1646, p. 3 and elsewhere). The term
sursolid occurs several times in the geometry of Descartes (1596-1650). It is to be
noted, however, that a product with Descartes always means a line of definite
length derived from given lengths by proportions. Problems which lead to equations
of the fifth or sixth degrees require for their geometrical solution curves “one degree
more complicated than conics.” Conics were called by the Greeks solid loci, and
these more complicated curves were called by Descartes sursolid loci (La Géométrie.
See pp. 20 and, 29 of the edition published by Hermann, Paris, 1886).

t Such solutions are given in the second and sixth books of Euclid’s Rlements.
See Heath’s edition, Cambridge University Press, 1908, vol. I, p. 383.
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the progress of algebra with the ancients. Higher equations
than the third were avoided as unreal,* and when the study
of higher equations forced itself upon mathematicians, it
meant an impossible extension of geometrical notions,
which met with many protests, and only in later times
gave way to a purely numerical conception of the nature
of algebraic quantities. Thus Stifel (1486 ?-1567), in the
Algebra of Rudolph already referred to (footnote, pre-
ceding page), speaks of ‘“going beyond the cube just as
if there were more than three dimensions,” ‘“which is,”
he adds, ‘““against nature.” { John Wallis (1616-1703)
in his Algebra objects to the ‘‘ungeometrical” names
given to the higher powers. He calls one of them a
“Monster in Nature, less possible than a Chimera or
Centaure.” He says: “Length, Breadth and Thickness,
take up the whole of Space. Nor can Fansie imagine how
there should be a Fourth Local Dimension beyond these
Three.”{ Ozanam (1640-1717), after speaking of the
product of two letters as a rectangle and the product of
three as a rectangular parallelopiped, says that a product
of more than three letters will be a magnitude of “as many
dimensions as there are letters, but it will only be imaginary
because in nature we do not know of any quantity wh1<:h
has more than three dimensions.” §

Again, we find in the writings of some philosophers ref-
erences to a space of four dimensions. Thus Henry More
(1614~1687), an English philosopher, in a book published
in 1671, says that spirits have four dimensions,{ and Kant
(1724-1804) refers in several places to the number of
dimensions of space.||

* Matthiessen, Grundziige der antiken und modernen Algebra, 2d ed., Leipzig,
1806, pp. 544 and 921. 1 Part I, chap. 1, fol. g recto.  } London, 1685, p. 126?

§ Dictionaire mathematique, Amsterdam, 1691, p. 62. .

@ Enchiridion meiapkysicum, Pt. I, chap. 28, § 7, p. 384.
|| For example, he says in the Critiguc of Pure Reason, “For if the intuition

-
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Finally, there is a suggestion made by certain writers
that mechanics can be considered a geometry of four
dimensions with time as the fourth dimension (see below,
p. 11). This idea is usually credited to Lagrange (1736~
1813), who advanced it in his Théorie des fonctions analy-
tiques, first published in 1797.* It is expressed, however, in
an article on “Dimension” published in 1754 by d’Alembert
(1717-1783) in the Encyclopédie edited by Diderot and
himself. D’Alembert attributes the suggestion to ‘“‘un
homme d’esprit de ma connaissance.” {

These are the only ways in which we have found our
subject referred to before 1827.

In the period beginning with 1827 we may distinguish
those writings which deal with the higher synthetic geom-
etry from those whose point of view is that of analysis.
In synthetic geometry our attention is confined at first
chiefly to the case of four dimensions, while in analysis
we are ready for n variables by the time we have con-
sidered two and three.

So far as we know, the first contribution to the synthetic
geometry of four dimensions is made by M&bius, who points
out that symmetrical figures could be made to coincide if
there were a space of four dimensions. In 1846 Cayley

were a concept gained a posteriori . . . we should not be able to say any more than
that, so far as hitherto observed, no space has yet been found having more than three
dimensions’’ (translation by F. Max Miiller, 2d ed. revised, Macmillan, 19os, p. 19).

C. H. Hinton finds in four-dimensional space illustration and interpretation of
the ideas of Plato, Aristotle, and other Greek philosophers (see Fourth Dimension,
London, 1904, chap. iv).

*p. 223; @uovres, vol. IX, Paris, 1881, p. 337.

+ See paper by R. C. Archibald, “Time as a Fourth Dimension,” Bulletin of the
American Mathematical Society, vol. 20, 1914, PpP. 400—412.

{ He states very clearly the analogy with symmetrical figures in a plane and
symmetrical groups of points on a line. Reasoning from this analogy, he says that
the coincidence of two symmetrical figures in space would require that we should
be able to let one of them make a rotation in space of four dimensions. Then he
adds, “Da aber ein solcher Raum nicht gedacht werden kann, so ist auch die Coin-
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makes use of geometry of four dimensions to investigate
certain configurations of points, suggesting a method that
is systematically developed by Veronese.* Cayley had al-
ready published a paper with the title  Chapters in the An-
alytical Geometry of () Dimensions,” { but as this paper
contains no actual reference to such a geometry, we may
think of the paper of 1846 as the beginning of his published
writings on this subject. Some of the most interesting
examples of the direct study of these geometries were given
by Sylvester. In 1851, in a paper on homogeneous func-
tions,] he discusses tangent and polar forms in #-dimensional
geometry; in 1859, in some lectures on partitions,§ he
makes an application of hyperspace; and in 1863, in a
memoir “On the Centre of Gravity of a Truncated Tri-
angular Pyramid,”q he takes up the corresponding
figures in four and # dimensions and proves his theorems
for all of these figures, using analytic methods to some
extent, but appealing freely to synthetic conceptions. Clif-
ford also, about this time, makes a very interesting applica-
tion of the higher geometry to a problem in probability. ||

cidenz in diesem Falle unmoglich ” (Der barycemtriscke Calcul, Leipzig, 1827,
§ 140, p. 184).

* “Sur quelques théordmes de la géométrie de position,” Crelle’s Journal, vol.
31, pp. 213—-226 (in particular, pp. 217—218); Collected Mathematical Papers,
Cambridge, vol. I, 1889, No. so. See also Veronese, Fondamenti, etc. (the full title
is given below on p. 9), p. 690 of the German translation, and Veronese’s memoir
(mentioned on p. 8). In introducing this method of reasoning, Cayley says:
“On peut en effet, sans recourir & aucune notion métaphysique 3 ’égard de la pos-
sibilité de I’espace & quatre dimensions, raisonner comme suit (tout cela pourra
aussi 8tre traduit facilement en langue purement analytique).” . . .

1 Cambridge Mathematical Journal, vol. 4, 1844; Math. Papers, vol. I, No. 11.

§ Cambridge and Dublin Mathematical Journal, vol. 6, p. 1; Collected Mathe-
matical Papers, Cambridge, vol. I, 1904, No. 30.

§ Outlines of these lectures are published in the Proceedings of the London Math-
ematical Society, vol. 28, 1896, p. 33; Mathematical Papers, vol. II, 1908, No. 26.

9 Philosophical Magazine, fourth series, vol. 26, Sept., 1863, pp. 167-183 ; Math-
ematical Papers, vol. 11, No. 6s.

|| Educational Times, Jan., 1866; Mathematical Reprints, vol. 6, pp. 83-87;
Mathematical Papers, Macmillan, 1882, p. 6or.
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Quite independently of this beginning of its synthetic
development, we find a notion of a higher geometry spring-
ing out of the applications of analysis. Certain geometri-
cal problems lead to equations which can be expressed
with any number of variables as well as with two or
three. Thus, in 1833, Green reduces the problem of the
attraction of ellipsoids to analysis, and then solves it for
any number of variables, saying, “It is no longer confined
as it were to the three dimensions of space.”* Other
writers make the same kind of generalization, though not
always pointing out so directly its geometrical significance.
It was but a step farther to apply the language of geometry
to all the forms and processes of algebra and analysis.
This principle is clearly announced by Cauchy in 1847,
in a memoir on analytical loci, where he says, “We shall
call a set of # variables an analytical point, an equation
or system of equations an analytical locus,” etc.}

The most important paper of this period is that of
Riemann, “On the Hypotheses which Lie at the Founda-"
tions of Geometry.”§ In this paper Riemann builds
up the notion of multiply-extended manifolds and their
measure-relations. He discusses the nature of the line-
element ds when the manifold is expressed by means of »
variables. When ds is equal to the square root of the sum

* Mathematical Papers of George Green, edited by N. M. Ferrers, Macmillan, 1871,
p. 188.

1 C. G. J. Jacobi, “De binis quibuslibet functionibus homogeneis,” etc., Crelle’s
Journal, vol. 12, 1834, p. 1; Cayley, two papers published in the Cambridge Ma-
thematical Journal, vol. 3, 1841 ; Mathematical Papers, vol. 1, Nos. 2 and 3; Schlifli,
“Ueber das Minimum des Integrals f(Vdz? +dn? +. . . + don?),” etc., Crale’s
Journal, vol. 43, 1852, pp. 23-36; “On the Integral f™dxdy . . . ds,” etc., Quarterly
Journal, vols. 2 and 3, 1858-1860.

1 “Mémoir sur les lieux analytiques,” Comples Rendus, vol. 24, p. 88s.

§ “Ueber die Hypothesen, welche der Geometrie zu Grunde liegen,” presented
to the philosophical faculty at Gottingen in 1854, but not published till 1866;
Gesammelte Werke, Leipzig, 1892, No. xiii, pp. 272-287; translated by Clifford
in Nature, vol. 8, 1873, pp. 14 and 36; Mathematical Papers, No. 9, pp. $5-60.
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of the squares of the quantities dx, as in the ordinary plane
and space, the manifold is flat. In general there is a devia-
tion from flatness, or curvature; and the simplest cases
are those in which the curvature is constant. Riemann
points out that space may be unbounded without being
infinite — that, in fact, it cannot be infinite if it has a con-
stant positive curvature differing at all from zero. We
therefore attribute to Riemann the Elliptic Non-Euclidean
Geometry, which from this time on takes its place beside
that other discovered by Bolyai and Lobachevsky. His
paper has a bearing on our subject in two ways: in the’
first place, his manifold of # dimensions is a space of -
dimensions, and geometrical conceptions are clearly before
the mind throughout the discussion; and then the notion
of a curvature of space suggests at once a space of four
dimensions in which the curved three-dimensional space
may lie. Soon after, it was shown by Beltrami that the
planimetry of Lobachevsky could be represented upon real
surfaces of constant negative curvature just as the Elliptic
Two-dimensional Geometry is represented upon the sphere,
and the way was fully opened for the study of spaces of
constant curvature and of curvature in general.*

Another work that has an important influence on recent
developments of hypergeometry, especially in its applica-
tion to physical theories, is the Ausdeknungslehre of Grass-
mann, first published in 1844, though little noticed at the

* Beltrami, “Saggio di interpretazione della geometria non-euclidea,” Giornale di
matematiche, vol. 6, 1868; Opere, Milan, vol. I, 1902, pp. 374—405.

Another memoir by Beltrami, “Teoria fondamentale degli spazii di curvatura
costante,” Annali di matematica pura ed applicats, Ser. 2, vol. 2, 1868-1869;
Opere, vol. 1, pp. 406—429, develops and explains much in Riemann’s paper that is
difficult to understand. There are French translations of both memoirs by Hoiiel,
Annales Scientifiques de I Ecole Normale Supérieure, vol. 6, 1869.

Beltrami considers the representations of the three-dimensional geometries upon
curved spaces as only analytic, while the representations of the two-dimensional
geometries upon surfaces of constant curvature are real. See Opere, vol. I, p. 396
and p. 427.
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time. His theory of extensive magnitudes is a vector
analysis, and the applications which he makes to plane
geometry and to geometry of three dimensions can be made
in the same way to geometry of any number of dimensions.

The number of memoirs and books relating to geometry
of four or more dimensions has increased enormously in
recent years. We can mention only a few. In 1870,
Cayley published his “Memoir on Abstract Geometry,”
in which he lays down the general principles of #-dimen-
sional geometry.* Another important contribution to the
science was an unfinished paper “On the Classification of
Loci” by Clifford.t An important paper by Nother on
birational transformations was published in 1870.1
Other papers were published by Halphen in 1873 and by
Jordan in 1875,§ the latter giving a methodical generaliza-
tion of metrical geometry by means of Cartesian coordi-
nates. Perhaps the most important of all was a memoir
by Veronese published in 1882,9 in which he takes up a
study of the properties of configurations, the quadratic
in any number of variables, the characteristics of curves,
correspondence of spaces, etc.: he employed synthetic,
not analytic methods, and inaugurated a purely synthetic
method of studying these geometries. Veronese’s Fonda-
menti di geometria contains an elementary synthetic treat-
ment of the geometry of four dimensions and the geometry
of # dimensions; and the Mehrdimensionale Geomeirie of

* Philosophical Transactions, vol. 160 ; Mathematical Papers, vol. VI, 1893, No. 413.

t Philosophical Tramsactions, vol. 169, 1878; Mathematical Papers, No. 33, pp.
305—-331.

} “Zur Theorie des eindeutigen Entsprechens algebraischer Gebilde von beliebig
vielen Dimensionen,” Mathematische Annalen, vol. 2, pp. 293—316.

§ Halphen, ‘““Recherches de géométrie & n# dimensions,” Bulletin de la Société
Mathématiqgue de France, vol. 2, pp. 34—52; Jordan, “Essai sur la géométrie &
dimensions,” id. vol. 3, pp. 103-174.

‘q[ “Behandlung der projectivischen Verhiltnisse der Riume von verschiedenen
Dimensionen durch das Princip des Projicirens und Schneidens,” Mathematische
Annalen, vol. 19, pp. 161-234.
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Schoute, employing a variety of methods, makes these
subjects very clear and interesting.* A hibliography with
nearly six hundred titles, up to 1907, is to be found in
Loria’s Il passato ed il presente delle principali teorie geo-
metriche.t The latest bibliography is that of Sommerville, }
which contains 1832 references on # dimensions up to
1911: about one-third of these are Italian, one-third
German, and the rest mostly French, English, and Dutch.§

We see that the geometries of more than three dimen-
sions were slow in gaining recognition. The general
notion that geometry is concerned only with objective
external space made the existence of any kind of geometry
seem to depend upon the existence of the same kind of
space. Consequently some of our leading mathematicians
hesitated to use the higher geometry,§ although the work-

* Veronese, Fondamenti di geomelria @ pin di ioni ed a pin spesie di unita
retiilinee esposti in forma elementare, Padua, 1891; German translation by Schepp,
Grundsiige der’ G trie von mehreren Dimensionem, etc., Leipzig, 1894. Schoute,

ehrdi ionale G trie, S lung Schubert, XXXV and XXXVI, Leipzig,
1902 and 1905. Another elementary treatment of the subject is by Jouffret,
Géoméirie @ quaire dimensions, Paris, 1903.

t 3d ed., Turin, 1907. .

1 Bibliography of Non-Euclid: G try, Including the Theory of Parallels,
the Foundations of Geomelry, and Space of n Dimensions, University of St. Andrews,
Scotland, 1g911.

§ There is now a considerable popular interest in the four-dimensional geometry,
because of the many curious things about it, and because of attempts which have
been made to explain certain mysterious phenomena by means of it. This interest
has -produced numerous articles and books written to describe the fourth dimension
in a non-mathematical way. In 1908 a prize of $500 was offered through the
Scientific American for the best non-mathematical essay on the fourth dimension.
Two hundred and forty-five essays were submitted in this competition. Some of
these have been published in a book, whose Introduction, by the present writer,
gives quite a full discussion of the various questions connected with the subject
(The Fourth Dimension Simply Explained, Munn and Company, New York, 1910).

9 Thus Darboux, in a memoir presented in 1869 at the Academy of Sciences and
published in 1873, speaks of a lacune in geometry of space as compared with plane
geometry, for certain plane curves can be studied with advantage as projections from
space, but “Comme on n’a pas d’espace & quatre dimensions, les méthodes de pro-
jection ne s’étendent pas 2 la géométrie de espace” (Sur une classe remarguable dc
courbes et de surfaces algébriques, Paris, p. 164). Even in 1903, in his Report at

E ]
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ing out of its details presented comparatively little diffi-
culty to them. This objection has led some writers to
emphasize those applications of four-dimensional geometry
that can be made in three-dimensional space, interpreting
it as a geometry four-dimensional in some other element
than the point — just as we have interpretations of the
non-Euclidean geometries, which cannot, however, take
the place of their ordinary interpretation.* As long ago as
1846 it was pointed out by Pliicker that four variables

the Congress at St. Louis, he says, “Une seule objection pouvait &tre faite . . .
I’absence de toute base réele, de tout substratum,” etc. (Bulletin des sciences mathé-
matiques, ser. 2, vol. 28, p. 261, Congress of Arts and Sciences, edited by H. J. Rogers,
Houghton, Mifflin and Co., Boston, vol. I, 1903, p. 557). But Darboux himself has
made important contributions to the geometry of #» dimensions: see, for example, his
Legons sur les systémes orthogonauzx, 2d ed., Paris, 1910; in particular, Bk. I, chap. 6,
and Bk. II, chap. 1.

Poincaré, in speaking of the representation of two complex variables in space of
four dimensions, says, “On est exposé i rebuter la plupart des lecteurs et de plus
on ne posséde que I'avantage d’un langage commode, mais incapable de parler aux
sens.” Acta Mathematica, vol. 9, 18861887, p. 324.

On the other hand, we have the following from Sylvester: ‘“There are many who
regard the alleged notion of a generalized space as only a disguised form of algebraic
formulization; but the same might be said with equal truth of our notion of infinity,
or of impossible lines, or lines making a zero angle in geometry, the utility of dealing
with which no one will be found to dispute. Dr. Salmon in his extension of Chasles’
theory of characteristics to surfaces, Mr. Clifford in a question of probability, and
myself in my theory of partitions, and also in my paper on barycentric projection,
have all felt and given evidence of the practical utility of handling space of four
dimensions as if it were conceivable space” (“A Plea for the Mathematician,”
Nature, vol. 1, 1869, p. 237; Mathematical Papers, vol. 11, p. 716).

A statement of Cayley’s has been given in a previous footnote (p. 5). For
other expressions of his views we may refer to the first paragraph of the “Memoir
on Abstract Geometry ”’ mentioned above, and to a statement quoted by Forsyth
in his “ Biographical Notice,” Cayley’s M athematical Papers, vol. VIII, 1895, p. xxxv.

As to the existence of a higher space, Gauss also is said to have considered it
a possibility (W. Sartorius von Waltershausen, “ Gauss zum Gedichtniss,” Gauss
Werke, Gottingen, vol. VIII, 1900, p. 267).

Segre, referring to the first of the two remarks that we have quoted from Darboux,
says, ‘“Maintenant nous faisons usage de I'espace A quatre dimensions sans nous
préoccuper de la question de son existence, que nous regardons comme une question
tout-a-fait secondaire, et personne ne pense qu'on vienne ainsi a perdre de la rigeur.”
Mathematische Annalen, vol. 24, 1884, p. 318.

* See Emory McClintock, “On the Non-Euclidean Geometry,” Bulletin of the
New York Mathematical Society, vol. 2, 1892, pp. 21-33.
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can be regarded as the codrdinates of a line in space.*
Another four-dimensional geometry that has been sug-
gested is that of spheres.f

But this higher geometry is now recognized as an indis-
pensable part of mathematics, intimately related to many
other branches, and with direct applications in mathe-
matical physics. The most important application for
the mathematician is the application as analytic geometry
to algebra and analysis: it furnishes concise terms and
expressions, and by its concrete conceptions enables him
to grasp the meanings of complicated formulae and in-
tricate relations. This is true of all the geometries as well
as the geometry of four dimensions. The latter is of special
use in connection with two complex variables, both in the
study of one as a function of the other, and when it is
desired to study functions of both considered as inde-
pendent variables.} Another very important applica-
tion of geometry of four dimensiens is that mentioned by
d’Alembert, making time the fourth dimension: within
a few years this idea has been developed very fully, and
has been found to furnish the simplest statement of the
new physical principle of relativity. §

* System der Geomeirie des Raumes, Diisseldorf, p. 322.

t See article by Professor Keyser, “A Sensuous Representation of Paths that
Lead from the Inside to the Outside of a Sphere in Space of Four Dimensions,”
Bulletin of the American M athematical Society, vol. 18, 1911, pp. 18-22.

1 See reference given on the preceding page to Poincaré’s memoir in the Acta
Mathematica; also Kwietnewski, Ucber Fldchen des mrdzmemumakn Raumes,

deren sémtliche Tangentialeb unier gleichwinklig sind, und shre Besichung
su den ebenen Kurven, Ziirich, 1902.

§ The theory has been developed somewhat as follows: If time is represented by
a codrdinate ¢ measured on an axis perpendicular to the hyperplane of the space-
axes, the f-axis itself or any parallel line will represent a stationary point, and uni-
form motion will be represented by lines oblique to the -axis, forming an angle with
the ¢-axis which depends on the rate of the motion. A certain velocity (the velocity
of light) is taken as the greatest possible velocity and the same for all systems of
measurement. The lines through the origin, or through any point, representing
this velocity are the elements of a conical hypersurface. All lines not parallel to
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With these various applications have been developed
many methods of studying the higher geometries, besides
the ordinary synthetic and analytic methods. We now
have the synthetic and analytic projective geometries,
including the projective theories of measurement ; we have
the theories of transformations and transformation groups;
the geometry of algebraic curves and algebraic functions;
the geometry associated with the representation of two
complex variables; differential geometry and the trans-
formation of differential expressions; analysis situs, enu-
merative geometry, kinematics, and descriptive geometry ;
the extensive magnitudes of Grassmann and different kinds
of vector geometry; the application of quaternions to
four dimensions; and the very recent application of four-
dimensional vector analysis to the principles of relativity.*

these elements are divided into two classes: the lines of one class, less inclined to
the t-axis, represent possible motions, while the lines of the other class can represent
only imaginary motions. The system may be regarded as a non-Euclidean geometry
in which the conical hypersurface plays the part of absolute for angles, while dis-
tances along lines of the two classes are independent and cannot be compared. Now
a point moving uniformly may be regarded as stationary, and the points which are
really stationary as moving uniformly in the opposite space-direction. This change
of view is represented by a transformation of codrdinates, the new #-axis being the
line representing the given uniform motion. In this theory the angles of planes
play an important part, and line and plane vectors are freely used.

This application of four-dimensional geometry was developed by Minkowski. For
further elaboration see article by E. B. Wilson and G. N. Lewis, “The Space-time
Manifold of Relativity. The Non-Euclidean Geometry of Mechanics and Electro-
magnetics,” Proceedings of the American Academy of Arts and Sciences, vol. 48,
No. 11, Nov., 1912.

* On the projective theory of measurement see d’Ovidio, ““Le funzione metriche
fondamentali negli spazii di quantesivogliano dimensioni e di curvatura costante,”
At della Accademia de Lincei, ser. 3, vol. 1, 1876, pp. 133-193; abstract in the
Mathematische Annalen, vol. 12, 1877, pp. 403—418.

On analysis situs there is an important series of memoirs by Poincaré: Journal de
P Ecole Polytechnique, vol. 100, 1894 ; Rendiconti del Circolo Matematico di Palermo,
vol. 13, 1899 ; Proceedings of the London M athematical Society, vol. 32, 1900 ; Bulletin
de la Société Mathématique de France, vol. 30, 1902 ; Journal de mathématiques pures
et appliquées, ser. 5, vol. 8, 1902; Rendiconti di Palermo, vol. 18, 1904; Comptes
Rendus, vol. 133, 1901.

The enumerative geometry has been developed chiefly by Schubert. He has
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All these interpretations and methods that have been
applied to the study of the higher geometries, and all these
uses to which they have been put, are interesting and valu-
able to a greater or less degree; but the greatest advantage
to be derived from the study of geometry of more than three
dimensions is a real understanding of the great science of
geometry. Our plane and solid geometries are but the
beginnings of this science. The four-dimensional geometry
is far more extensive than the three-dimensional, and all
the higher geometries are more extensive than the lower.
The number and variety of figures increases more and more
rapidly as we mount to higher and higher spaces, each space
extending in a direction not existing in the lower spaces,
each space only one of an infinite number of such spaces
in the next higher. ° s

A study of the four-dimensional geometry, with its
hyperplanes like our three-dimensional space, enables us
to prove theorems in geometry of three dimensions, just
as a consideration of the latter enables us to prove theorems
in plane geometry. Such theorems may come from much
simpler theorems relating to the four-dimensional figures
of which the given figures are sections or projections.*

articles in the Mathematische Annalen, vols. 26, 38, and 45, 1886, 1891 and 1894 ; in
the Acta Mathematica, vol. 8, 1886 ; and elsewhere.

In kinematics we may mention : Clifford, “On the Free Motion under No Forces
of a Rigid System in an N-fold Homaloid,” Proceedings of the London M athematical
Society, vol. 7, 1876, Mathematical Papers, No. 26, pp. 236—240; Beltrami, “ Formules
fondamentales de cinématique dans les espaces de courbure constante,” Bulletin des
science mathématiques, vol. 11, 1876, pp. 233—240, Opere, vol. 111, 1911, pp. 23—29;
see also articles by Craig and Hatzidakis in the American Journal of Mathematics,
vols. 20 and 22, 1898, and 1900.

Quaternions have been applied to geometry of four dimensions by Hathaway,
Bulletin of the American Mathematical Society, vol. 4, 1897, pp. 54-57; Trams-
actions of the American Mathematical Society, vol. 3, 1902, pp. 46—59; and by
Stringham, Tramsactions, vol. 2, 1901, pp. 183—214; Bulletin, vol. 11, 1905, pp.
437-439.

Other methods are illustrated in memoirs already referred to.

* See Cayley’s article in Crelle’s Journal, vol. 31, and the articles of Veronese and
Segre in the Mathematische Annalen. to which we have already referred.
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Indeed, many theorems and processes are seen only partially
or not at all in the lower geometries, their true nature and
extent appearing in the higher spaces. Thus in space of
four dimensions is found the first illustration of figures
which have two independent angles, and of different kinds
of parallelism and different kinds of perpendicularity.
Another example is the general theorem of which a partic-
ular case is given in Art 31, namely, that a section of a
simplex of # dimensions is one of the two parts into which
a simplex of # — 1 dimensions (that is, its interior) may be
divided by a section.* There are also many properties
in which spaces of an even number of dimensions differ
from spaces of an odd number of dimensions, and these
differences would hardly be recognized if we had only the
ordinary geometries. Thus in spaces of an even number
of dimensions rotation takes place around a point, a plane,
or some other axis-space of an even number of dimensions,
while in spaces of an odd number of dimensions the axis
of a rotation is always of an odd number of dimensions
(see chap. IV). ,

The study of these geometries gives us a truer view of
the nature of geometrical reasoning, and enables us to
break away from intuition. This is especially true if we
adopt the synthetic method. The analytic geometry may
seem to be free from difficulty, and many feel a higher
degree of certainty in the results of their algebraic processes.
But we are apt to attach the terms of geometry to our
algebraic forms without any attempt at a realization of
their significance. There is, indeed, an abstract geometry
in which the terms are regarded as meaningless symbols;
but the interest and usefulness of geometry depend on the
clearness of our perception of the figures to which it may be
applied, and so we prefer to study some concrete geometry,

* See Schoute, Mchrdimensionale Geometrie, vol. I, § 1, Nr. 6.
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some interpretation of the abstract geometry which we
could have obtained by giving a particular interpretation
to its terms. And then the abstract geometry and other
interpretations can all be obtained from the concrete
geometry.* There is really the same absolute certainty
to synthetic geometry if it is developed logically from the
axioms, and in the synthetic study of four-dimensional
geometry we are forced to give up intuition and rely entirely
on our logic.f

Although it is doubtful whether we can ever picture to
ourselves the figures of hyperspace in the sense that we can
picture to ourselves the figures of ordinary space, yet we
can reason about them, and, knowing that the validity of
our geometry depends only on the logical accuracy of our
reasoning, we can proceed to build it up without waiting
for a realization of it; and then we may in time acquire
such facility in handling the geometrical proofs of the
theorems and in stating precisely the forms and properties
of the figures that it is almost as if we could see them. For

* Some portions of our study are treated by themselves as new interpretations
of geometries already studied. As soon as the fundamental propositions which
correspond to the axioms of some such geometry have been established, so as to
justify this mode of procedure, we have only to translate its theorems in accordance
with these propositions to have in our possession a complete development of the
particular subject considered. Examples are, the three-dimensional Point Geom-
etry (Art. 64), the two-dimensional Edge Geometry (Art. 78), and the theory of
systems of isocline planes at a point (Art. 112).

t We do not seek to know which of several geometries is the true geometry, and
in laying the foundations we do not seek for the true system of axioms, or even the
true system of elements and relations. All geometries are equally true, and some-
times a particular geometry may be built up equally well in several different ways.
A complete treatise on geometry should consider not only the different geometries,
but different methods of building up each geometry. An example of such a treat-
ment is the first volume of Fragen der Elementargeomelrie, edited by Enriques
(Leipzig, 1911, German translation by H. Thieme of Questions riguardanti la geometria
elementare, Bologna, 1900). See also the chapters on this subject by Enriques and
others in the French and German Encyclopedias (Encyklopddie der math. Wiss., vol.
IIL, Leipzig, 1907; Encyclopédie des sci. math., vol. IIL,, Leipzig, 1o11). A list of
different systems of fundamental elements and relations is given in a footnote at
the beginning of Coolidge’s Non-Euclidean Geometry, Oxford, 1909.
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in studying the geometry synthetically our attention is
- fixed upon the figures themselves, and this takes us directly
to the heart of the difficulty and keeps it before us until
we have mastered it. Thus in its results this geometry
greatly increases our power of intuition and our imagina-
tion.*

The following pages have been written with the object
of meeting as far as possible the difficulties of the subject.
No knowledge of higher mathematics is necessary; yet
we do not believe that the simplest way is to avoid a math-
ematical treatment. The confidence gained from a study
of the proofs, if they can be made clear and precise, will
do more for the student than a mere description of four-
dimensional space. We will indicate how this purpose has
influenced us in our choice of subject-matter and the form
of presentation.

We have adopted the synthetic method and made no
use of analytic proofs, feeling, as we have already explained,
that this study of the figures themselves will serve best to
help us understand them.

We have confined ourselves to the fourth dimension,
although it would have been easy to cover a much wider
field.1 We hope that in this way the four-dimensional
space will be made to appear as a concrete matter to be
studied by itself, and not as one of an indefinite series of
spaces, each understood only in a vague general way.

We have wished to give to these pages a familiar appear-
ance, and so have endeavored to follow the popular text-
books and build up a structure that will rest on the founda-
tions laid in the schools. Our geometry might have been
adapted to the axioms of some modern investigation, or

*See C. J. Keyser, ‘“Mathematical Emancipations,” Monist, vol. 16, 1906,

pp. 65-83, particularly pp. 81-82.
1 See, for example, the Mehrdimensionale Geometrie of Schoute.
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have attempted to establish a system of axioms, but either
course would have raised questions quite different from
those of four-dimensional geometry. The methods em-
ployed in this book are methods which the student has used
freely in the past, even though he may be ignorant of their
true significance and justification: there is nothing new
in their application here, and their employment without
question leaves him free to fix his attention upon the
difficulties inherent in the subject.

There is, however, one part of the foundations which has
been presented with considerable care, namely, that which
relates to the definitions and the intersections of certain
elementary figures. It is here that the four-dimensional
geometry begins to contradict our experience, declaring,
for example, that two complete planes may have only
a point in common, and that a line can pass through a point
of the interior of a solid without passing through any other
of its points. It is true that these facts and many others
not easy to realize are easily proved, and require only a few
of the theorems given in this connection. On the other
hand, the theorems for which most of these details are
needed are so “evident” that they are usually ignored al-
together. Now a statement of these theorems, with a
realization of what is assumed and of what is to be proved,
and a logical working out of the proofs themselves, will
give the student more confidence in all the results of his
study. Similar considerations have led us in the fourth
chapter to take up symmetry, order, and motion in space
of two dimensions and in space of three dimensions.

Great assistance comes from the analogies that exist in
geometry, and so we have gone back in some cases and
given proofs which are not well known, and to which more
difficult proofs that follow are analogous;* and we have

* See, for example, the theorems of Arts. 61 and 62.
c
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tried to facilitate the comparison of chapters and sections
analogous to one another by adopting in them the same
arrangement of paragraphs and the same phraseology.

Not much use can be made of diagrams, and so far as
they are given they must be regarded as indicating the re-
lations of different parts of a figure rather than as showing
in any way its appearance. A figure can be accurately
determined by its projections, and the descriptive geometry
of four dimensions will be helpful to those who are familar
with the methods of descriptive geometry.* Much can
also be learned by studying the sectioms of a figure. A
section of a four-dimensional figure is that part which lies
in a three-dimensional space or hyperplane, and is, there-
fore, like the figures of our space. We can suppose that
we are able to place ourselves in any hyperplane, and so to
examine any hyperplane section: in connection with the
diagrams we shall sometimes call attention to those parts
which lie in any one section, speaking of them as ‘“what
we can see in a hyperplane.” One way of studying a
figure is to let it pass across our space, giving us a con-
tinuously varying section, as if time were the fourth di-
mension. Another way is to let it turn, or our section of it,
so that the direction of our view changes. It is along
these lines, if at all, that we are to acquire a perception of
hyperspace and its figures.

Some explanation should be made in regard to the arrange-
ment, the particular form chosen for the foundations so
far as they are considered, and the fundamental conceptions
as we have presented them.

We have given only the Euclidean Geometry, except that
the geometry of the hypersphere, and of the hyperplane
at infinity, and the geometry in a few less important cases,

* See Schoute, Mehrdi ionale G trie, vol. I, § 5.
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are themselves non-Euclidean. It has been found, however,
that several chapters can be completed before we make
any hypothesis in regard to parallels, and that, too, without
much variation from the usual treatment. Perpendiculars
and all kinds of angles, symmetry and order, and those
hypersurfaces (the hyperpyramid, the hypercone, and the
hypersphere) which do not involve parallels —in fact,
all of “restricted” geometry — can be taken up before the
introduction of parallels.* In the chapter on the hyper-
sphere, its geometry, being elliptic, is stated as such, and
agroup of theorems is given from the non-Euclidean geom-
etry; and in the last chapter the non-Euclidean prop-
erties of the hypersphere are used quite freely. Although
these portions of the book may be omitted, the student
will find it an advantage to make himself familiar with the
Hyperbolic and Elliptic geometries. {

We have started with points only as elements, regarding
all figures as classes of points, and so defining a figure
simply by stating what points constitute the class. To do
this we assume first a relation by which with any two points
certain points are said to be collinear. Then for line we
take two points and the class of points collinear with them,
add to the group all points collinear with any two that we
now have, and thus continue, at each step adding to our
class of points all that are collinear with any two already
in the group, so that the line includes every point which
it is possible to get in this way. Thus any two points
determine a class consisting of the points which are collinear
with them, and any two points determine a class of the
kind which we call a line.f By the axioms of Art. 3 the

* See the author’s Non-Euclidean Geomelry, Ginn and Co., Boston, 1901, chap. I;
in particular, p. 6.

1 The Hyperbolic and Elliptic geometries are the only non-Euclidean geometries

that we have referred to at all.
$ That two points determine a line does not mean, as in some of our text-books,
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two classes are identical : the line consists only of the points
collinear with the two given points, and there are no addi-
tional points to be obtained by taking any two of these
points. In fact, any two points of a line determine the
same class of points as collinear with them, and the same
line. But until we have adopted these axioms we must
suppose that the line might be a much more extended class :
that, if we have the points collinear with two given points,
the class of points collinear with any two of these might
be quite different; and that, while a line must contain
every point of the line determined by any two of its points,
the latter might not contain every point of the former.
Thus we make a distinction at the beginning between the
notion of collinear points and the notion of points of a line,
and this distinction makes line analogous to plane and
hyperplane, and to spaces of more than three dimensions.
But after we have adopted our first two axioms we are
able to employ the word collinear in its commonly accepted
sense, and thus to avoid the introduction of a new term for
one of these two relations.

A careful distinction has been made between the points
of a closed figure and the points of its interior. Thus
a triangle is made to consist of three vertices and the points
of its sides, a tetrahedron of its vertices and the points of
its edges and faces, and so on. This is only carrying to
the limit the tendency to regard a circle as a curve rather
than as the portion of the plane enclosed by the curve, and
a sphere as a surface. The figure of one-dimensional
geometry corresponding to the triangle and tetrahedron,
the one-dimensional simplex, is the segment. Therefore, we
have defined segment as consisting of two points, and let

that the line contains the two points, or that no other line contains them. A figure
may be determined in various ways. Thus a line in the ordinary plane geometry
may be determined by two points as the locus of points equidistant from them.
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the points between them constitute the interior of the seg-
ment.* On the other hand, a side of a polygon or an edge
of a polyhedron is the interior of a segment, consisting of
the points between two vertices and not including the ver-
tices themselves ; a face consists of the interior of a triangle
or polygon; a half-line is defined so as not to include its
extremity, a half-plane so as not to include its edge; and
soon. We speak, indeed, of the sides and vertices of a face,
of the length of a segment, and of the area of a triangle,
just as, in general, we have used the terms of ordinary
geometry without definition, and employed freely all the
words and phrases of its everyday language. But the
distinction between the points of a closed figure and the
points of its interior is of great importance, and has been -
carefully observed.

* Hilbert defines segment (Strecke) as a ‘“system of two points,”” but he speaks
of the points between 4 and B as ‘““points of the segment 4B,” although he also
speaks of them as points “situated within the segment” (Grundlagen der G trie,
Leipzig, 1899, p. 6, 4th ed., 1013, p. 5).

In the Encyclopédie des sci mathématigues, vol. IIT,, p. 23, Enriques defines
segment upon a line as “having its extreme points at two given points 4 and B of
the line and containing the intermediate points.”” More definitely, in the Elements
di geomelria of Enriques and Amaldi (Bologna, 1911), half-line is defined so as to
include its extremity, and then the segment 4B is the part common to the half-
lines 4B and B4 (p. 3).

E. H. Moore defines the segment 4 B as consisting of points “distinct from 4 and
B,” etc.; that is, 4 and B are not included among the points of his segment (“On
the Projective Axioms of Geometry,” Transactions of the American Mathematical
Society, vol. 3, 1902, p. 147, Axiom 2). See also Veblen, “A System of Axioms
for Geometry,” Transactions, vol. 5, 1904, p. 354, Definition 1, and “The Founda-
tions of Geometry,” Monographs on Modern Mathematics, edited by J. W. A.
Young, New York, 1911, p. 5.

Most writers who use the word segment in this connection regard a segment as
an entity, a piece of a line, without considering whether the end-points are included
or not. Many writers speak of the segment as the ‘“measure of the distance”
between the two points (see Schotten, Inkalt und Methode des Planimetrischen
Unterrichts, Leipzig, vol. II, 1893, chap. 1, § 2).

Veblen, in the “Foundations of Geometry” just referred to, defines triangle and
tetrahedron in the same way that we have defined them (pp. 29 and 45).
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* A remarkable memoir on geometry of # dimensions is Theorie der
vielfachen Komtinuitit, by L. Schlafli, edited by J. H. Graph, Bern,
1911. This was written in the years 1850-1852, but the author did
not succeed in getting it published, apparently on account of its
length, and it remained among his papers for fifty years, until after
his death (see Vorbemerkung).

Among other things he works out the theory of perpendicularity
and all kinds of angles, giving, in particular, a generalization of the
theorems which we have given in Arts. 66 and 67 (§ 15). He proves the
polyhedroid formula and the corresponding formula for any number
of dimensions, and he constructs the six regular convex polyhedroids
and the three regular figures which exist in each of the higher spaces,
proving that these are the only regular figures of this kind (§ 17).
He makes an extensive study of the hypervolume of a spherical sim-
plex, showing the difference between the cases of an even number and
of an odd number of dimensions, and giving the formula for a pen-
tahedroid to which we have referred at the end of Art. 165 (§ 22).
In the third part of the memoir he takes up quadratic hypersurfaces,
the classification of these hypersurfaces, confocal hypersurfaces, etc.

The methods are analytical, but the language and conceptions are
purely geometrical.

* This note was written after the rest of the Introduction was in type.



CHAPTER 1

THE FOUNDATIONS OF FOUR-DIMENSIONAL
GEOMETRY

I. POINTS AND LINES

1. Points. Figures regarded as classes of points.
The elements of geometry are points. We do not define
the term point. It is impossible to build up a system of
geometry without undefined terms, and if we can give
different meanings to this word we shall be able hereafter
to give to our geometry different interpretations (see, for
example, Arts. 64 and 78 and Introduction, p. 15).

The objects which we study are to be regarded as con-
sisting of points, thatis, as classes of points selected accord-
ing to various laws from the class which includes all points.
Any selected class is said to constitute a figure, although
the word figure is also used to denote a drawing or picture.
The points of a figure may also be said to lZe in the figure
or belong to it. One figure is said to lie #n another when
all of its points are points of the second. It will often be
convenient to speak of a figure as consisting of certain other
figures, but this expression should always be understood
as meaning that it consists of the points of these other
figures.

Two figures intersect when they have a point or points in
common, and their intersection consists of such common
point or points.

2. The collinear relation. Geometries of 1,2, 3,. .. n,
. dimensions. Points have an undefined relation de-
23
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noted by the term collinear. Given any two points, there
is a class consisting of the points collinear with them.

Geometries of 1,2, 3, .. . n, . . .dimensions are geom-
etries of figures lying in spaces of 1, 2, 3, . . . ®m, . ..
dimensions; that is, in a line, plane, hyperplane, and in
spaces of more than three dimensions.

A line* consists of the points that we get if we take two
distinct points, all points collinear with them, and all points
collinear with any two obtained by this process.

A plane consists of the points that we get if we take
three points not points of one line, all points collinear with
any two of them, and all points collinear with any two ob-
tained by this process.

A hyperplane consists of the points that we get if we take
four points not points of one plane, all points collinear with
any two of them, and all points collinear with any two
obtained by this process.

A space of four dimensions consists of the points that we
get if we take five points not points of one hyperplane,
all points collinear with any two of them, and all points
collinear with any two obtained by this process.

Continuing in this way, we can define a space of n+1
dimensions after we have defined a space of # dimensions.
All spaces have this property: that the points collinear
with any two points of a space belong to the space.

Two distinct points are said to be independent. In
general, a point is independent of the points of a given
class if it is not included among the points that we can
get by taking these points, points collinear with any two
of them, and points collinear with any two obtained by
this process. The points of a given set are absolutely in-

* In the ordinary interpretation of these terms, line aloneis used for séraight line,
and the complete line is meant, not that part of a line which we shall speak of as the
interior of a segment (Art. 5).
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dependent if it is impossible to obtain them all in this way
from a smaller number of points.* The different kinds of
space are distinguished by the number of absolutely inde-
pendent points that they can contain.

3. Segments. Two axioms concerning the collinear
relation. A segment{ consists of two distinct points.
Any two points are the points of a segment. The segment
consisting of the points 4 and B will be called the segment
AB.

A point is said to be collinear with a segment when it is
_ collinear with the two points of the segment.

Concerning the collinear relation we shall now make
two axioms :

AxioM 1. The class of poinits collinear with the segment
A B includes the two points of this segment.

AxioM 2.1 If a point O, not the point B, is collinear
with the segment A B, then any point P collinear with the seg-
ment A B will be collinear with the segment OB.

In other words, if O is collinear with the segment 4B
and is not the point B (so that there is a segment OB),
then all points collinear with the segment A4 B will be collin-
ear with the segment OB. In particular, 4 itself will be
collinear with the segment OB, and therefore, conversely,
all points collinear with the segment OB will be collinear

* If the points of a set are absolutely independent, each point will be independent
of the rest; and in this geometry we shall find that the points of a set are absolutely
independent if each point is independent of the rest (Art. 4, Th. 2; Art. 1o, Th. 2;
etc.). We may, therefore, speak of such points simply as independent points.

1 Halsted calls this a sect (Elements of Geometry, New York, 1885, p. 9). He
also uses the word straight for line, taking these terms from the German Strecke
and Gerade (see Rational Geometry, New York, 1907, pp. 1 and 6).

$ In the Elliptic Non-Euclidean Geometry this is assumed with certain re-
strictions. Thus on the sphere, whose geometry is the elliptic two-dimensional
geometry, collinear meaning ‘“on a great circle with,”’ the statement given here as
Axiom 2 is not true when 4 and B are opposite points.
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with the segment AB. The class of points collinear with
one segment is the same as the class of points collinear
with the other segment. We can use 4 or O interchange-
- ably in connection with B as one of the two points with
respect to which the class is selected.

In this second axiom we do not intend to make any dis-
tinction between the points 4 and B. Except when O is
one of these points, P will be collinear with both of the seg-
ments OA4 and OB; and when O is the point B, it will be
collinear with the segment OA.

4. Lines. Only one line contains two given points.
Given two distinct points 4 and B, the line A B is the line
obtained when we start with these points and carry out
the process described in the definition of line (Art. 2).

If A’ and B’ are two distinct points of the line 4B, then
all points of the line A’B’ will be points of the line 4B;
for the process of obtaining the second line is but a continu-
ation of the process of obtaining the first. We shall now
prove that all points of the line AB are points of the line
A’B’; in other words, that the two are the same line, and
that two points can both be points of only one line.

THEOREM 1. Amy point O of the line AB is cpllinéar
with the segment A B. .

Proor. We shall prove this theorem by induction.
We know that it is true of the points 4 and B (Art. 3, Ax. 1).
Let O be any other point of the line.

By hypothesis, O, being a point of the line 4 B, is collin-
ear with two points M and N of the line. We assume
that the theorem is true of M and N. M must be distinct
from one, at least, of the points 4 and B, since they are
distinct. Let us suppose that M is not B. Then we can
substitute M for A4, and say that all points collinear with
the segment AB are collinear with the segment MB.
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Again, since N is one of these points and is not the point
M, we can substitute N for B, and say that all of these
points are collinear with the segment MN. Now O is
collinear with the segment MN. Therefore, reversing
this process of substitution, we have O collinear with the
segment M B, and finally with the segment 4 B.

THEOREM 2. If A’ and B’ are two distinct points of the
line AB, then the line A' B’ is the same as the line AB.

Proor. We may suppose that A’ is not B. Then,
since A’ is collinear with the segment 4 B, A will be collin-
ear with the segment 4’B, and the line A’B will be the
same as the line AB. In the same way we prove that the
line 4’B’ is the same line.

It follows from these two theorems that the class of
points collinear with the segment 4B constitute the line
A B, and that collinear with means lying on a line with. It
follows also that the two points 4 and B do not play any
particular part among the points of the line. We can
speak of a set of collinear points, or of points collinear with
one another, without specifying any two particular points
as special points of the class. We can also speak of two
or more points as collinear with one given point.

6. Order of points on a line. Half-lines. Another
relation in geometry, a relation of the points of a line, is
that of order.* This may be explained somewhat in detail
as follows:

If A and B are two distinct points, then 4 comes before
B and B lies beyond A in one direction along the line AB,
while B comes before A and A lies beyond B in the opposite
direction. If A comes before B and B before C in a given
direction along a line, then A4 comes before C in the same

* Veblen uses the word order to mean order on a line, *“ System of Axioms,” p. 344;
or “ Foundations of Geometry,” p. 5 (full references are given above, p. 21).
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direction, and B is said to lie between A and C. Given any
three points of a line, one of them lies between the other
two.

This relation of order belongs to other classes of points be-
sides those of aline. For example, it belongs to the class of
points constituting what is commonly called a broken line.

The points of a line have also relations of density and
continuity, but it will not be necessary to explain these
terms here, nor to give the axioms and theorems by which
these relations and the relations of order are established.*

The interior of a segment consists of the points which lie
between the two points of the segment.

A half-line or ray is that portion of a line which lies in
one direction along the line from a given point of it. The
given point is called the extremity of the half-line, but this
point is not itself a point of the half-line. The half-line
which has the extremity 4 and contains B, the half-line
which we can describe as drawn from A through B, is called
the half-line AB; and that portion of this half-line which
lies beyond B is itself a half-line, called the continuation
of AB, or AB produced. The two half-lines into which
a given point of a line divides the rest of the line are called
_ opposite half-lines.

6. Cyclical order. There is another kind of order called
cyclical order. When the points of a class are in cyclical
order, two of these points A and B (unless they are con-
secutive points) divide the rest of them into two sub-classes,
those of one sub-class lying from 4 towards B in one direc-
tion and those of the other sub-class lying from 4 towards
B in the opposite direction. 4 and B are said to lie

* See Introduction, p. 16. For a treatment of these subjects we will refer to
Veblen’s “System of Axioms "’ or *“ Foundations of Geometry,” and to R. L. Moore,

“Sets of Metrical Hypotheses,” Transactions of the American Mathematical Society,
vol. 9, 1908, pp. 487-512.
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between the points of the two sub-classes and to separate
them. If C is a point of one sub-class and D a point of
the other sub-class, that is, if we have these points in the
cyclical order ACBDA, then we can say that the segments
AB and CD separate each other. If we think of a class
of points in cyclical order as cut at some point, they will
then have the relations of order described in the pre-
ceding article. We shall have many illustrations of cycli-
cal order (see Arts. 7 and 14).*

II. TRIANGLES

7. Triangles. Axiom of Pasch. Intersection of a line
and a triangle. A triangle consists of three non-collinear
points and the interiors of the three segments whose points
are these points taken two at a time.

The three points are the vertices, and the interiors of the
segments are the sides.

Any three non-collinear points are the vertices of a tri-
angle. In particular, two vertices of a given triangle and
a point in a side which does not lie between them are them-
selves the vertices of a triangle; so also are a point in each
of two sides and the vertex where these two sides meet.

The points of a triangle are in cyclical order in the tri-
angle (Art. 6).

-For a complete treatment of the intersections of lines
and triangles the following axiom is required : t

* The points of a circle are in cyclical order. Indeed, the points of a line are in
cyclical order in Projective Geometry and in the Elliptic Non-Euclidean Geometry.
We do not wish to exclude the Elliptic Geometry by assuming that the points of the
entire line are not in cyclical order. In many cases of cyclical order there will be
an “opposite” to every element, and on a line of this kind we can determine the
two directions at any point by regarding the line as cut at the opposite point (see,
for example, the definition of “between”” and ‘“‘side produced” in Art. 122); or we
can suppose that we are considering only a “restricted’’ portion of the line; that is
one of the sub-classes determined by two points suitably chosen in any given case.

t See Veblen, ““System of Axioms,” p. 351.
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AxioM. A line intersecting one side of a triangle and
another side produced intersects the third side.

This will be referred to as the Axiom of Pasch. Asstated,
it is a little broader than is necessary.

THEOREM. No line can intersect one side of a triangle
and two sides produced, nor can a line intersect all three sides
of a triangle. A

Proor. The first statement follows directly from the
Axiom of Pasch. To prove the second statement, let us
suppose that a line could intersect the three sides of the tri-
angle ABC, BC at A’, AC at B’, and AB at C’, B’coming
between 4’ and C’ on the line. In the triangle A’BC’ we
should then have the line AC intersecting one side, 4’C’,
at B’, and the other two sides produced. But this is con-
trary to the first statement of the theorem. Therefore a
line cannot intersect all three sides of a triangle.

COROLLARY. No line can contain more than two points
of a triangle unless it contains one of the sides of the triangle.

8. Interior of a triangle. The interior of a triangle con-
sists of the interiors of all segments whose points are points
of the triangle, except of those segments which are collinear
with two vertices of the triangle, that is, whose interiors
also lie in the triangle. The interior of a triangle does not
include the triangle itself ; hence, whatever is in the triangle
cannot be in the interior of the triangle.

THEOREM 1. If two segments lying in a triangle separate
each other in the cyclical order of the points of the triangle
(Art. 6), then their interiors intersect, unless the interior of
one of these segments lies in the triangle.

Proor. When each of the two given segments has a
vertex for one of its points, each segment with the third
vertex determines a triangle to which we can apply the
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Axiom of Pasch and thus prove that the interior of this
segment is intersected by the line containing the other
segment. From this it fol-
lows that the interiors of the
two segments have a point in
common.

When one of the two given
segments has a vertex for one
of its points and the other
does not, we form a triangle
by taking one point of the
latter and the two vertices of
the given triangle which are
collinear with its other point.
This triangle contains also
the first segment, or a seg-
ment whose interior is- a part of the interior of the first
segment.* We can prove the theorem, then, by proving it
for this segment and the second given segment.

When neither of the two given segments contains a ver-
tex we proceed in the same way, reducing this case first to
the preceding. :

THEOREM 2. A half-line drawn from any point P of a
triangle through a point O of the interior intersects the triangle
in a point of PO produced.

In proving this theorem we follow the methods of the
preceding proof, taking first the case where O is between
one vertex and a point of the opposite side and P is at
another vertex.

CoROLLARY. If one of two opposite half-lines drawn from
a point O of the interior of a triangle intersects the triangle,
the other does also.

* According to theorems of order referred to in Art. 5; see Veblen, ““System of
Axioms,” p. 357, Lemma 6, or “ Foundations of Geometry,” p. 11, Cor. 4.
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9. The relation, collinear with a triangle. A point is
said to be collinear with a triangle when it is collinear with
any two points of the triangle.

This is true, in particular, of all points of the triangle,
of all points of the sides produced, and of all points of the
interior.

THEOREM 1. If a point O is collinear with a iriangle
ABC, and if P is any point of this triangle not a vertex and
not the point O, then the line PO will intersect the triangle at
least in a second point Q.

Proor. The line PO may contain one side of the triangle.
Otherwise, if O is a point of the triangle, it will itself be the
second point Q, and if O is a point of a side produced, the
theorem is the same as the Axiom of Pasch. IfOis a point
of the interior, the theorem is the same as Th. 2 of the
preceding article. ‘

A

A

Cc (0]

There remains, therefore, only the case where O is not a
point of any one of the lines AB, BC, or AC, nor a point of
the interior of the triangle. Let H and K then be the two
points with which O is collinear, H a point of the side 4 B,
or the vertex B, and K a point of the side AC, or the vertex
C, H and K, not both vertices, however.
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We may suppose also that O is a point of H K produced.
Then K will lie in the interior of the triangle O4A B or on
the side OB, and the half-line AC, which passes through
K, will intersect the interior of the segment BO in a point
G. Now O is a point of BG produced. We have the tri-
angles A BG and CBG, and in one or both of these triangles
the line PO, intersecting BG produced and one other side,
will intersect the third side. Therefore, in all cases this
line will intersect the triangle A BC in a second point Q.

THEOREM 2. If a point O, not a point of the line BC,
1s collinear with the triangle A BC, then any point P collinear
with the triangle ABC will
be collinear with the triangle
OBC. :

Proor. First let O be a
point of the line AB. If
O is at A, the triangle OBC
is the same as the triangle
ABC. If P is a point of the
line 4 B, it is collinear with O
and B. Let us suppose then
that P is not a point of this
line, and that O is a point of .
the side AB, a point of BA
produced, or a point of 4B
produced.

If O is a point of the
sidle AB, then a line
through P and a point of
OB will intersect BC or
will pass through C,
or, intersecting AC, will intersect OC (Axiom of
Pasch). '

w
o
>
o
(o]

D

D
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If O is a point of BA produced, then a line through P
and a point of 4B will intersect BC or will pass through C,
or, intersecting AC, will intersect OC.

If O is a point of 4B produced, then a line through P
and a point of A B will intersect AC or will pass through C,
or, intersecting BC, will intersect OC. P will be collinear
with the triangle 0AC, and therefore, by the first case, with
the triangle OBC.

In the same way we prove the theorem when O is a point
of the line AC.

If O is not a point of any one of the lines AB, BC, or
AC, then a line through O and a point D of the side

BC will pass through 4 or

A o will intersect one of the sides

ABor AC. Let the point of

intersection be E, and let us

suppose that it is the point

D A or a point of AC. Then

P, being collinear with the

triangle ABC, will be collinear with the triangle 4DC,

then with the triangle EDC, with the triangle ODC, and
finally with the triangle OBC.

In other words, if O is collinear with the triangle ABC
and is not a pqint of the line BC (so that there is a triangle
OBC(), then all points collinear with the triangle A BC will
be collinear with the triangle OBC. In particular, 4 it-
self will be collinear with the triangle OBC, and therefore,
conversely, all points collinear with the triangle OBC will
be collinear with the triangle ABC. The class of points
collinear with one triangle is the same as the class of points
collinear with the other triangle. We can use 4 or O in-
terchangeably in connection with the segment BC as one of
the three points with respect to which the class is selected.
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In this theorem we do not intend to make any distinc-
tion between the point 4 and the points B and C. Except
when O is collinear with two of these three points, P will
be collinear with all three of the triangles OBC, OAC, and
OAB.

III. PLANES

10. Planes. Only one plane contains three given non-
collinear points. As already stated, a plane consists of the
points that we get if we take three points not points of
one line, all points collinear with any two of them, and all
points collinear with any two obtained by this process.

Given three non-collinear points, 4, B, and C, the plane
ABC is the plane obtained when we take these points and
carry out the process described in the definition.

Now we can take for two of the three given points any
two points of their line. That is, if B’ and C’ are points
of the line BC, the plane AB’C’ is the same as the plane
ABC (Art. 4, Th. 2). We can think of a line as one of the
things with which we start in the process of obtaining a plane.
Given the points of a line and a point not a point of the line,
we take all points collinear with any two of these and all
points collinear with any two obtained by this process.

If A’, B’, and C’ are three non-collinear points of the
plane ABC, then all points of the plane 4’B’C’ will be
points of the plane ABC; for the process of obtaining the
second plane is but a continuation of the process of obtain-
ing the first. We shall now prove that all points of the
plane ABC are points of the plane A’B’C’; in other
words, that the two are the same plane, and that three
non-collinear points can all be points of only one plane.

THEOREM 1. Any point of the plane ABC is collinear
with the triangle A BC*

* Collinear with a triangle is therefore the same as caplam;r with the tna.ngle,
in the usual sense of the word coplanar.



36 PLANES [r. m.

Proor. We prove this theorem just as we proved
Th. 1 of Art. 4. We know that it is true of all points of
the triangle and of all points of the sides produced. We
let O be any other point, and prove by induction that the
theorem is true for O.

This point is, by hypothesis, collinear with two points
M and N of the plane ABC. We assume that the theorem
is true of M and N. We can suppose also that M is not a
point of the line BC and that N is not a point of the line
MB. 1t follows (Art. 9, Th. 2) that we can substitute M
for A, and say that all points collinear with the triangle
ABC are collinear with the triangle MBC. Again, since N
is one of these points and is not a point of the line M B, we
can substitute N for C, and say that all of these points are
collinear with the triangle MNB. Now O is collinear with
the segment MN and so with the triangle MNB. There-
fore, reversing this process of substitution, we have O
collinear with the triangle M BC, and finally with the
triangle A BC.

THEOREM 2. If A’ B’, and C' are three non-collinear
points of the plane A BC, then the plane A’ B'C’ is the same
as the plane ABC.

Proor. We will prove this theorem just as we proved
Th. 2 of Art. 4. We can suppose that 4’ is not a point
of the line BC, and that B’ is not a point of the line
A’'C. Then, since A’ is collinear with the triangle 4 BC,
A will be collinear with the triangle A’ BC (Art. g, Th. 2),
and the plane A’BC will be the same as the plane ABC.
In the same way we prove that the plane A’B’C, and
finally the plane 4’'B’C’, is the same plane.

11. Intersection of a line and a triangle in a plane.
THEOREM. In the plane ABC any line intersecting a
side of the triangle ABC will intersect this triangle al least
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in a second point, and any half-line drawn from a point O
of the interior of the triangle will intersect the triangle.

Proor. The first statement follows directly from Art. g,
Th. 1, since the line contains points collinear with the
triangle. To prove the second statement, let the half-line
AO intersect the side BC in a point D, a point of AO pro-
duced (Art. 8, Th. 2). Since the given plane can also be
regarded either as the plane A BD or as the plane ACD, it
follows that any line of this plane through O other than the
line AD will intersect both of these triangles again; that
is, that any line through O, whether the line 4D or some
other line of the plane, will intersect the given triangle;
and, therefore, that any half-line drawn in the plane from
0, as well as its opposite half-line, will intersect the tri-
angle (see Art. 8, Th. 2, Cor.).

12. The two parts of a plane lying on opposite sides of a
line.
THEOREM 1. Any line of a plane divides the rest of the
plane * into two parts, so that the interior of a segment lying
one point in each part intersects the line, and the interior
of a segment lying both points in the same part does not inter-
sect the line.

Proor.f Let a be the given line, and 4 a point of the
plane which is not a point of . We divide the points of
the plane which are not points of a into two classes, putting
A into the first class, putting a point B into the first class
if the interior of the segment A B does not contain a point
of a, and putting a point B’ into the second class if the
interior of the segment AB’ does contain a point of a.

* Or at least any restricted portion of the plane through which it passes. The
same statement applies to the first theorem of Art. 23, and to Art. 28.

1 This proof is given in Halsted’s Rational Geometry, p. 8. The point 4 used
for purposes of proof does not play any particular part in the actual separation of
the points into two classes, any more than do any two points play a particular part
in the class of points which we call a line.
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Any line of the plane through A will contain only points
of the first class, or will contain a point of a by which
the rest of its points are separated into two classes, so

c

B’ ¢
that the interior of a segment with one point in each
class itself contains a point of @, and the interior of a
segment with both points in the same class does not con-
tain a point of a.*

Now in a triangle ABB’, B being a point of the first
class, and B’ a point of the second class, the line g, intersect-
ing the side 4 B’ and not A B, must intersect BB’ (Art. 11).

In a triangle ABC, B and C being points of the first
class, the line ¢ does not intersect either side coming to 4,
and therefore it cannot intersect BC (same reference).

Finally, in a triangle AB’C’, B’ and C’ being points of
the second class, the line @ intersects both of the sides
which meet at A4, and therefore it cannot intersect B’C’
(Art. 7).

The two parts into which any line of a plane divides the
rest of the plane are said to lie on opposite sides of the line,
and the line is said to lie between them.

* This is one of the theorems of order referred to in Art. 5.
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THEOREM 2. If two lines intersect, the opposite half-lines
of each, drawn from their point of intersection, lie in their
plane on opposite sides of the other.

13. Half-planes. The three half-planes of a triangle.
That portion of a plane which lies on one side of a line of it
is called a half-plane, and the line is the edge of the half-
plane. The half-plane which has the line 4B for its edge
and contains the point C will be called the kalf-plane A B-C.
The two half-planes into which any line of a plane divides
the rest of the plane are called opposite half-planes.

THEOREM 1. Every point of the plane ABC belongs to
one, at least, of the three half-planes BC-A, AC-B, or AB-C.

Proor. All points of the plane which do not belong to
the half-plane BC-A4 belong to the line BC or to the half-
plane opposite to BC-4.

All points of the line BC belong to the half-line CB or to
the half-line BC, or to both, and so to one, at least, of the
half-planes AC-B or AB-C.

Let P be a point of the half-plane opposite to BC-A4.
The interior of the segment 4 P has a point Q in common
with the line BC, a point of one or both of the half-planes
AC-B and AB-C. Now the interior of the segment PQ
cannot have points in common with both of the lines AC
and AB; for PQ produced contains their common point 4.
Therefore P belongs, with Q, to one or both of these two
half-planes.

That is, every point of the plane which is not a point of
the half-plane BC-A4 belongs to one, at least, of the two
half-planes AC-B and AB-C.

THEOREM 2. Any point O of the interior of the iriangle
ABC belongs to all three of the half-planes BC-A, AC-B,
and AB-C.
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THEOREM 3. Conversely, if a point P belongs to all three
of the half-planes BC-A, AC-B, and AB-C, then it is a
point of the interior of the triangle ABC.

Proor. Let O be any point other than P of the interior
of the triangle. Then O like P belongs to each of the half-
planes BC-A4, AC-B, and AB-C, and the interior of the
segment PO cannot intersect the triangle (see statement
of Th. 1 of Art. 12). But the opposite half-lines drawn
from O, the half-line OP and the half-line PO produced,
do intersect the triangle (Art. 11), intersecting it in the
two points of a segment whose interior contains O, and
therefore P, and lies entirely in the interior of the triangle.
Therefore P lies in the interior of the triangle.

IV. CONVEX POLYGONS

14. Polygons. The half-planes of a convex polygon.
A polygon consists of a finite number of points, three or
more, taken in a definite cyclical order, and the interiors
of the segments whose points are consecutive points of this
order. ‘ -

The points are the vertices of the polygon, and the inte-
riors of the segments are its sides. If 4, B,C, . . . are
the vertices in order, the sides are the interiors of the seg-
ments AB, BC, . . ., and the polygon may be described
as the polygon ABC . . . The entire class of points be-
longing to the polygon are in cyclical order (Art. 6).

The triangle is a particular case of the polygon.

A diagonal of a polygon is the interior of a segment whose
points are two non-consecutive vertices of the polygon.
A polygon must have at least four vertices to have a diag-
onal.

A plane polygon is a polygon which lies entirely in a plane.
If two points of such a polygon are on opposite sides of a
line of the plane, each of the two portions into which these
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points divide the rest of the polygon will intersect the line,
for in each portion there will be a vertex on the line or a
side that has points on both sides of the line.

A polygon is a simple polygon when no point occurs twice
as a point of the polygon. By polygon we shall always mean
a simple plane polygon.

A convex polygon is a simple plane polygon no point of
which is a point of a side produced.

THEOREM 1. If each pair of consecutive vertices of a poly-
gon lie in the edge of a half-plane which contains all of the
other vertices, the polygon is a convex polygon.

THEOREM 2. Conversely, in a convex polygon each pair
of consecutive vertices lies in the edge of a half-plane which
contains all of the other vertices.

Proor. Let 4 and B be two consecutive vertices, and
let D and E be any other vertices. If AB-D and AB-E
were opposite half-planes, each of the two portions into
which D and E divide the rest of the polygon would con-
tain at least one point of the line AB. But the side AB
lies entirely in one of these two portions, and no point
of the other portion can be a point of the line AB if the
polygon is a convex polygon.

CoroLLARY. If A and B are two consecutive vertices of
a convex polygon, and if P is any point of the polygon not a
point of the line AB, then all points of the polygon except
those of the line A B will be points of the half-plane A B—P.

16. Intersection of a line and a convex polygon.

THEOREM 1. No line can contain more than two points of
a convex polygon unless it contains one of the sides.

Proor. Let us suppose that a line ¢, not containing a
side of the polygon, could contain the three points H, K,
and M of the polygon, M coming between H and K on
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the line. That side of the polygon of which M is a point,
or one of the two sides which meet at M if M is a vertex,
is a part of a line b, the common edge of two opposite half-
planes which contain the points H and K respectively.

But this is contrary to the corollary of the preceding
theorem. Therefore, a line cannot contain three points
of the convex polygon unless it contains one of the sides.

THEOREM 2. If H and K are two points of a convex
polygon, with at least one vertex in each of the two portions
into which they divide the rest of the polygon, then H and K
and the interior of the segment H K will form with each of
these two portions a convex polygon.

Proor. Let A, B, . . . be the vertices in one of these
portions, taken in order from H. These points with H
and K will then be the vertices of a polygon HAB . . .
K H. This is a simple polygon, for no point of the interior
of the segment HK is a point of the original polygon
(Th. 1). It is also a convex polygon: no point of either
continuation of H K can be a point of the original polygon
(same reference); moreover, no point of HK can be a
point of -some other side produced, for the line containing
such a side would be the common edge of two opposite
half-planes, one containing the point H and the other
the point K, which is contrary to the corollary in the last
article. In the same way we prove that the other polygon
is a convex polygon.
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THEOREM 3. If a line intersects a convex polygon in two
points, and does not contain one of the sides of the polygon,
the two portions into which these points divide the rest of the
polygon lie on opposite sides of the line.

Proor. If either of the two points is a point of a side
and not a vertex, the extremities of this side will lie on op-
posite sides of the given line; and as the polygon can inter-
sect the line in only the two given points, the two portions
into which these points divide the rest of the polygon must
lie one entirely on one side and the other entirely on the
opposite side. It only remains, therefore, to prove the
theorem in the case of a diagonal.

D

Let A E be any diagonal, D, E, and F being three consecu-
tive vertices. No three of the points 4, D, E, and F can
be collinear (Th. 1).

Now D, like all the vertices except E and F, is a point
of the half-plane EF-A (Art. 14, Th. 2). Again, D is a
point of the half-plane AF-E; for D and E, being con-
secutive vertices, belong to one of the two portions into
which 4 and F divide the rest of the polygon, and lie on
the same side of the line AF. Then if D and F were on the
same side of the line A E, D would be a point of the half-
plane A E-F, and would therefore be in the interior of the
triangle AEF (Art. 13, Th. 3). But this would put 4
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and F on opposite sides of the line ED (see Art. 8, Th.
2), which is contrary to the second theorem of Art. 14. It
follows that D and F lie on opposite sides of the line AE;
and the same must be true of the entire portions into
which 4 and E divide the rest of the polygon.

THEOREM 4. Any line in the plane of a comvex polygon
inlersecting a side will intersect the polygon at least in a
second point.

If the polygon is not a triangle, a diagonal will form
with it two convex polygons, each having a smaller number
of vertices than the given polygon. Thus the theorem,
being true of a triangle (Art. 11), can be proved by induc-
tion to be true of any convex polygon.

16. Interior of a convex polygon. The interior of a con-
vex polygon consists of the interiors of all segments whose
points are points of the polygon, except of those whose
interiors also lie in the polygon.

THEOREM 1. If two segments lying in a convex polygon
separate each other in the cyclical order of the poinis of the
polygon (Art. 6), then their interiors will intersect unless the
interior of one of these segments lies in the polygon.

Proor. Let EF and HK be two segments separating
each other in the cyclical order of the points of the polygon.
The points H and K lie on opposite sides of the line EF,
and the points E and F lie on opposite sides of the line HK,
unless one of these lines contains a side of the polygon
(Art. 15, Th. 3). The line of each segment therefore passes
between the points of the other, and the interiors of the two
segments intersect.

THEOREM 2. Any half-line drawn in the plane of a con-
vex polygon from a point O of the interior will intersect the
polygon.
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Proor. The point O is in the interior of a segment H K
whose points are points of the polygon. It lies, then, in
the side H K of two convex polygons, all of which, except
this side and the points H and K, lie on opposite sides of
the line HK (Art. 15, Ths. 2 and 3). The theorem can
therefore be proved in the same way that the theorem of
Art. 11 is proved.

THEOREM 3. Any half-plane whose edge contains two
consecutive vertices of a convex polygon, and which ilself
contains the other vertices (Art. 14, Th. 2), contains also all
the points of the interior.

THEOREM 4. Conversely, if a point P lies in each of the
half-planes whose edges contain two consecutive vertices of
a convex polygon and which themselves contain the other ver-
tices, thenm P is in the interior of the polygon.

The proof is the same as that of Th. 3 of Art. 13.

V. TETRAHEDRONS

17. Tetrahedrons. Intersection of a plane and a tetra-
hedron. A (fetrahedron consists of four non-coplanar
points and the sides and interiors of the four triangles whose
vertices are these points taken three at a time.

The four points are the vertices of the tetrahedron, the
sides of the triangles are the edges, and the interiors of the
triangles are the faces. Any four non-coplanar points are
the vertices of a tetrahedron. 4

We shall sometimes speak of the vertices and sides of
a face, but it should always be remembered that a face of a
tetrahedron is the interior of a triangle and does not include
the triangle itself.

THEOREM 1. The plane of three non-collinear points of
a tetrahedron, if not itself the plane of one of the faces, inter-
sects the tetrahedron in a triangle or a convex quadrilateral.
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ProoF. Two points of the given intersection in the
plane of any one face determine a line which contains a
point in each of the planes of at least two other faces.
If then we have another point of the given intersection in
the plane of one of these faces, we have a second line;
and we can sometimes continue in this way and trace the
intersection completely around the tetrahedron.

This will always be the case when one of the given points
is a vertex. Any plane through a vertex and two points
of the tetrahedron not collinear with the vertex, if not
itself the plane of one of the faces, will intersect the tetra-
hedron in a triangle.

The following construction, with slight modifications,
will provide for all other cases:

A

Let ABCD be the given tetrahedron. Let H, F, and
K be three points of the given intersection: H a point of
the face ABC, F a point of the face BCD, and K a point
of the edge A D or of one of the faces ABD or ACD. AH
produced will meet the triangle BCD in a point H',and 4 K
produced in a point K’, H’ a point of the s