CHAPTER V
POLYHEDRA

: of Solid Bodies be an uncommon and neglecteq Part
*Although a D;Slc&l;rlsiet is no inconsiderable or unprofitable Improv.emem of
of Geometry., i);l (no doubt) be readily granted })y such, whosc‘ Qemus tends
L Sclzlletrcl)cfh\: Practical as Speculative Parts of it, for whom this is chiefly ip.
as we

tended.”™*

A polyhedron is a solid figuret with .plane faces gn.d straight
edges, so arranged that every edge i1s both thfe. Join of two
vertices and a common side of two faces. Familiar Instances
are the pyramids and prisms. (A pentagonal pyra.mld has six
vertices, ten edges, and six faces; a pentagonal prism has ten,
fifteen, and seven. See figure 7 on plate 1.) I would mention
also the antiprism,{ whose two bases, though parallel, are not
similarly situated, but each vertex of either corresponds to a
side of the other, so that the lateral edges form a zigzag. (Thus
a pentagonal antiprism has ten vertices, twenty edges, and
twelve faces. See figure 9 on plate 1.)

The tessellations described on page 106 may be regarded as
infinite polyhedra.

SYMMETRY AND SYMMETRIES

[t is convenient to say that a figure is reflexible§ if it is super-
posable with its image in a plane mirror (1.e. if 1t is, in the most
elementary sense, “symmetrical”). A figure which is not re-
flexible forms, with its mirror-image, an enantiomorphous pair.

*Abraham Sharp, Geometry Improv'd, London, 1717, p. 65.
tMore precisely, it is the sy

s rface of such a solid figure. _ .
“S:)“(fis.pnsmoxd. See the Encyclopaedia Britannica (x1vth edition), article

§Or “self-reﬂcxible."



Plate |




|3] POLYHEDRA

(The obvious example is a pair of shoes) A regey
has at least one plane of S«""”f’i"”}' ; the Ope€ratiop of re ﬁg}lre
. such -a plane leaves the figure uncha-nged as g whgft‘“g
fioure may also be symmetrical by rotation about an q S
symmetry. The vague ftatement that a ﬁgUre has , Xis of
,mount of “‘symmetry” can be made precise by say;
the figure has a certain nu.mbe.r of symmgtries, 8 Mt
being defined as any combination of motions and reﬂectiry
which leaves the figure unchanged as a whole. ong
For a regular polygon ABC_. .. X, there ig
(in fact, a rotation) which cyclically permutes
changing A into B,Binto C,. .. ,and X into 4.

eflexip)

. 8§y mmetry
the vertiCes

THE FIVE PLATONIEC SOLIDS

Let A be a vertex belonging to a face « of a polyhedrop, The
polyhedron is said to be regular if it admits two particular
symmetries: one which cyclically permutes the vertjces of o,
and one which cyclically permutes the faces surrounding 4. It
follows that all the faces are regular and equal, all the edges are
equal, and all the vertices are surrounded alike. If each vertey
is surrounded by g p-gons, we may denote the polyhedron
by the symbol p? (as on page 106) or {p, q}.

If the polyhedron is finite, the faces at one vertex form a
solid angle. The internal angle of each face being (p—2)n/p, we
now have q(p—2)n/p <2x, that is,

(p—2)(g—2)<A4.

Since p and g are both greater than 2, we merely have to con-
sider the possible ways of expressing 1 or 2 or 3 as the product
of two positive integers, and then in each case the polyhedron
can be built up, face by face. Letting V, E, F denote the numl_)er
of vertices, edges, faces, the results are as in the following
‘able. (See plate 1, figure 1, 2, 3, 4, 5.)

* .
Or Symmetry operation.’

! % . a[‘dCd
, i (Any rotation or translation may be reé
4sa combin

ation of two reﬁections.)



MATHEMATICAL RECREATIONS AND ESSAY
S

Ip.q) 4 E F
e Name
{3..3] 4 6 4
I R
(3,
}5 g { 70 10 lg Octahedron
3 2 { | 5 = Dodecahedron
(3,5 | 20 Icosahedron

Clearly, V= 2E =pF. A less obvious relation is
E-'=p'+4+q'-L

This follows easily from Euler’s Formula F+ V — E=2, which
will be proved in chapter VIII, on pages 232-233.

In four ways the tetrahedron can be regarded as a triangular
pyramid, and the octahedron as a triangular antiprism. In three
ways the octahedron can be regarded as a square double-
pyramid, and the cube as a square prism. In six ways the icosa-
hedron can be regarded as a pentagonal antiprism with two
pentagonal pyramids stuck on to its bases. The faces of the
dodecahedron consist of two opposite pentagons (in parallel
planes), each surrounded by five other pentagons.

An icosahedron can be inscribed in an octahedron, so that
each vertex of the icosahedron divides an edge of the octa-
hedron according to the ‘“‘golden section.”* A cube can be
inscribed in a dodecahedron so that each edge of the cube lies
in a face of the dodecahedron (and joins two alternate vertices
of that face).

These five figures have been known since ancient times. The
earliest thorough investigation of them is probably that of
Theaetetus.t It has been suggested that Euclid’s Elements was
originally written, not as a general treatise on geometry, put n
order to supply the necessary Steps for a full appreciation of
the five regular solids. At any rate, Euclid begins by construct-
ing an equilateral triangle, and ends by constructing a dodeca-
hedron.

*See page 39.

+T. Heath, A History of Greek M athematics, Oxford, 1921, vol. 1, p. 162.
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: minded Greeks associat§d the regular
Elements and the Universe, Keplerfo-lyhedfa
Ondence as follows. Of the ﬁve Solids t}:USliﬁed
he smallest volume for its surface, e ic,os € teyr,
hese therefore exhibit the qualities of dry: Top
wetness, resp""Ctin:ly , and ?orl:Spond o i and Wat:Srs ;nd
cube, standing firmly on its base, corresponds t, Sy he
Earth; but the octahedron, which rotates freely When hcldble
{wo opposite COTners, corresponds to the n:nobile Air, Fin:|:)y
the dodecahedron Forrespopds ke e U.mverse, bCCauSe th.
zodiac has twelve sIgns. He illustrated this correspondenc be
Jdrawing a bonfire on his tetrahedron; a lobster apq fishes Oy
his icosahedron; a tree, a qarrot, and gardening tools op h-n
cube: birds and clouds on his octahedron; and the sun, moo:
and stars on his dodecahedron. -
with each of these polyhedra we may associate three cop.
centric spheres: one (the “‘circum-sphere™) through g the
vertices. one touching all the edges, and one (the “'insphere")
touching all the faces. Consider the sc?cond of these spheres If
we replace each edge by a perpendicular line touching (hjs
sphere at the same point, the edges at a vertex lead to the sides

ron
Icosahedron and Octahedron Cube and Dodecahed

*Opera Omnia, Frankfort, 1864, vol. v, p. 121
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faces of another *‘re.
ces. The reciprocal of

| - e recl
f: . a

hedron is self—r_eCIprocal or, rather, reciprocal to another tet
hedron. The diagonals of the faces of a cube are the edge l’a-f
(WO reciprocal tetrahedra. (See figure 27 op plate I licsio
this page.) The term reciprocal arises from the existet;oe ofn f
reciprocating sphere, with respect to which the vertices of
(q, p} are the -poles of the face-p!anes of {p, q}, and vice versa
The ratio of circum-radius R to in-radius r is exactly the same
for the cube as for the octahedron, and for the dodecahedrop
as for the icosahedron. In fact, if the reciprocating sphere has
radius p, the reciprocal of a given polyhedron has circum-
radius p?/r and in-radius p?/R. Thus the relative size of two
reciprocal polyhedra may be adjusted so as to make them have
the same circum-sphere and the same in-sphere. (In general,
their corresponding edges will no longer intersect.)

If two reciprocal regular solids of the same in-radius (and
therefore the same circum-radius) stand side by side on a
horizontal plane (such as a table top), the distribution of
vertices in horizontal planes is the same for both — ie. the
planes are the same, and the numbers of vertices in each plane
are proportional. This fact was noticed by Pappus,* but has
only recently been adequately explained. although its various
extensions indicated that it was no mere accident. One of these
extensions is to the Kepler-Poinsot polyhedra, which will be
described later. Another is to tessellations of a plane. Consider
the tessellation {6, 3} (i.e. hexagons, three round each vertex).
By picking out alternate vertices of each hexagon in a consis-
tent manner, we derive the triangular tessellation {3, 6 (which,
in a different position, is the reciprocal tessellation). We then
find that every circle concentric with a face of the {6, 3} con-
tains twice as many vertices of the {6, 3} as of the {3, 6]. (Thls‘-
however, is obvious, since the omitted vertices of the {6, 3}
belong to another {3, 6}, congruent to the first.)

*T. Heath, A History of Greek Mathematics, vol. 11, pp. 368-369.

ygon. Such polygons are the y
»» polyhedron, which has F ver;

{P, q]
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The fact'that thei vertices of a hexagonal tesse]]

so to tWO triangular tessellations is analogg

tilon (p. 134) that the vertices of a cube gbelfzfxzoai:l:f?a'
regular tetrahedra. These two tetrahedra may be said 10 fowo
o compound — Kepler’s stella octangula; their eight faces ; ey
the facial planes of an octahedron. There is also a com olﬁ lg
of five tretrahedra having the vertices of a dodecahedrort)l a:d
the facial planes pf an icosahedron; this occurs in two enan-
tjomorphous varieties. By putting the two varieties together
so as to have the same twenty vertices, we obtain a compounci
of ten retrahedra, oppositely situated pairs of which can be
replaced by five cubes (having the twenty vertices of the dodeca-
hedron, each taken twice). It is quite easy to visualize one such
cube in a given dodecahedron (as in the second drawing on
page 133); the whole set of five makes a very pretty model.
Finally, by reciprocating the five cubes we obtain a compound
of five octahedra having the facial planes of an icosahedron,
each taken twice. This icosahedron is inscribed in each one of
the octahedra as in the first drawing on page 133. (See also plate
i1, figures 27, 33, 35, 36, 37.)

Among the edges of a regular polyhedron, we easily pick
out a skew polygon or zigzag, in which the first and second
edges are sides of one face, the second and third are sides of
another face, and so on. This zigzag is known as a Perrie
polygon, and has many applications. Each finite polyhedron
can be orthogonally projected on to a plane in such a way that
one Petrie polygon becomes a regular polygon with the rest of
the projection inside it. It can be shown in various simple
ways that the Petrie polygon of {p. q} has h sides, where

ation belong

cos?(n/h) = cos?(m/p)+cos*(n/q).

The h sides of the Petrie polygon of {p, g are crossed by .h
edges of the reciprocal polyhedron {q. p}; these form a Petrie
polygon for {q, p}.

The regular polyhedra are symmetri
ways. There is an axis of symmetry 1
every face, through the mid-point of every

cal in many different
hrough the centre of
edge, and through
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The Platonic Solids and their Petrie Polygons

R— | axes altogether. There are 3]
every vertex: E+ SO 3]1/2 pla'!es
of symmetry.

THE ARCHIMEDEAN SOLIDS

A polyhedron is said tQ be u.niform if it has re
admits symmetries which will transform a gi
every other vertex in turn. The Platonic polyh§dra are uniforyy, .
so are the right regular prisms and antiprisms, of Suitable
heicht — namely, when their lateral faces are squares and equi-
lateral triangles, respectively. Such a polyhedron may be
denoted by a symbol giving the numbers of sides of the faceg
around one vertex (in their proper cyclic order); thys the
n-gonal prism and antiprism are 4%.n and 33 .n. It is quite easy
to prove* that, apart from these, there are just thirteen (finite.
convex) uniform polyhedra:

3.6 4.6°, 3.8°, 5.6, 3.102, 4.6.8 4.5.10
(3.4, (3.5° 3.4°% 3.4.5.4. 3t 4. P35

These are the Archimedean solids.

Let ¢ denote the sum of the face-angles at a vertex. (This
must be less than 27 in order to make a solid angle.) Then the
number of vertices is given by the formulat (2n—o)V=4r
For instance, 3*.5 has 60 vertices, since & =3+ _

Il we regard the stella octangula as consisting of two 1nter-
penetrating solid tetrahedra, we may say that their common
Part is an octahedron. Also, as we have already observed.

O S _ W
PXSLL. lor instance, TR S, Walsh, Geometriae Dedicata, 1972, vol. 1, PP

TE Steinny and H. Radem
Berlin. 1934 p. 11.

gular faceg ang
vVeén vertex into

) . ) 2 Pol".e‘!"".
acher, Vorlesungen tiber die T heorie der
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(heir edges are diagonals of the faces of cube. Ana]

5 on part of a cube and : 0gou
the common pal : and an octahedron, ip the pro
reciprocal position (w1t.h corresponding edges perpendi cul;ar]
bisecting each. other), is the cuboctahedyon (3.4)%. Each ,y
of corresponding edges (of the cube and octahedr.o,]) arePtE;lr
diagonals of a .rhomb, and the twelve such rhombs are th:
faces of a “semi-regular” polyhedron known as the rhombic
dodecahedron. (The latter is not uniform, but “isohedral.”
See the first drawing on page 151.) After suitabje magnification
the edges of the cuboctahedron intersect those of the rhombic’
dodecahedron (at right angles); in fact, these two polyhedra
are reciprocal, just as the octahedron and cube are reciprocal.
The icosahedron and dodecahedron lead similarly to the
icosidodecahedron (3.5)2, and to its reciprocal, the triaconta-
hedron. (See plate 11, figures 28, 29, and plate 1, figures 12, 10,
20, 18. Compare the tessellations drawn on page 106.) The com-
pound of five cubes has the 30 facial planes of a triacontahed-
ron. Reciprocally, the compound of five octahedra has the 30
vertices of an icosidodecahedron.

The faces of the icosidodecahedron consist of 20 triangles
and 12 pentagons (corresponding to the faces of the two
parent regulars). Its 60 edges are perpendicularly bisected by
those of the reciprocal triacontahedron (although the latter
edges are not bisected by the former: see plate 11, figure 39).
The 60 points where these pairs of edges cross one another are
the vertices of a polyhedron whose faces consist of 20 triangles,
[2 pentagons, and 30 rectangles. By slightly displacing these
points (towards the mid-points of the edges of the triaconta-
hedron), the rectangles can be distorted into squares, and we
have another Archimedean solid, the rhombicosidodecahedron,
3.4.5.4. (Plate 1, figure 23 ; compare the tessellation 3.4.6.4.)
An analogous construction leads to the rhombicuboctahedron*
3.4% whose faces consist of 8 triangles and 6+ 12 squares.
(See plate 11, figure 38, and plate 1, figure 13.) In attempting

sly,
erly

3 > e o -icosi-dodeca-
*Le., “rhombi-cub-octahedron: but the other is ‘“rhomb-icosi-do
hedron.™
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psecudo-rhombicuboctahedron

to make a model of this polyhedr(?n, J.C.P. Miller* acciden;
Jllv discovered @ “pseudo-rhombicuboctahedron,™ bOUnde(;
lik-cwisc by 8 triangles and 18 squares, and isogonal in the looge
or “'local” sense (each vertex being surrounded by one triangl

and three squares), but not in the strict sense (which implies that
the appearance of the solid as a whole must remain the same
when viewed from the direction of each vertex in turn),

On cutting off the corners of a cube, by planes paralle] tq the
faces of the reciprocal octahedron, we leave small triangles.
and reduce the square faces to octagons. For suitable positions
of the cutting planes these octagons will be regular, and we
have another Archimedean solid, the truncated cube, 3.8
(CT. the tessellations 4.8% and 3.122.) Each of the five Platonic
solids has its truncated variety ;¥ so have the cuboctahedron
and the icosidodecahedron, but in these last cases (4.6.8 and
4.6.10) a distortion is again required, to convert rectangles
into squares. (Cf. the tessellation 4.6.12.)

All the Archimedean solids so far discussed are reflexible
(by reflection in the plane that perpendicularly bisects any
edge). The remaining two, however, are not reflexible: the

;f(’)lil()sophi(-(ll Fransaetions of the Roval Society, 1930, series A, vol. CCXXIX.

p. 336, J ]
f(l;he'--\lruncaled 2 qj"is q.(2p)>. See plate 1, figures 11, 15, 16, 25, 22. ‘

firie faccount of this distortion, the truncated cuboctahedron (4. 6. 8) is some-
168 called the “greay rhombicuboctahedron.” and then 3.43 is called the

;m:j:lt rhom.bicgboclahedron: similarly for the truncated icosidodecahedror
n rhombncosndodecahedron.
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antib cube 3 4. and the snub d?decahedron 34
.17 and 21} Lc? us Flraw one diagonal in each
of the rhombncosxfiodecahedron, choosing
ossible diagonals in such a way that just one
shall pass through each of the 60 vertices. (The chojce g
first Squares_d§term1nes that s all the rest.) Each square hae
now been.dIVIdﬁd AIESEF D .rlght-angled 1sosceles triangless~
by distorting these 1*nto equilateral triangles we obtaip the:
b dodecahedron.® The snub cube is similarly derivabe
from the rhombicuboctahedron, provided we remember to
operate only on the 12 squares that correspond to the edges
of the cube (and not on the 6 squares that correspond to jts
faces). The tessellation 3*.6 may be regarded asa “snub {6, 3}
and 32.4.3.4 as a “'snub {4, 4}.”” Moreover, the “snub tetra-
hedron” is the icosahedron {3, 5}, derived as above from the
cuboctahedron (or “rhombi-tetra-tetrahedron”).

The snub cube and the snub dodecahedron both occur in
two enantiomorphous varieties. Their metrical properties
involve the solution of cubic equations, whereas those of the
reflexible Archimedeans (and of the regulars) involve nothing
worse than square roots; in other words, the reflexibles are
capable of Euclidean construction, but the two proper snubs

are not.

.5 (plate 1, figures
of the 30 squares
between the two
of these new lines

MRS. STOTT’S CONSTRUCTION

The above description of the Archimedean solids is essentially
Kepler's. A far more elegant construction for the reflexible
figures has been devised by Alicia Boole Stott.t Her method
is free from any employment of distortion, and the final edge-
length is the same as that of the regular solid from which we
start. In the process called expansion, certain sets of elements
(viz., edges or faces) are moved directly away from the centre,

retaining their size and orientation, until the consequent 1n-

icosahedron just

*This name is unfortunate, since the figure is related to the
n" would be far

as closely as to the dodecahedron. **Snub icosidodecahedro
better.
TVerhandelingen der Koninklijke Akademie van Wetenschappen, Amsterdam,

1910, vol. x1, no. 1.



(1) Tetrahedron and Truncated Tetrahedron

(2) Cube and Rhombicuboctahedron  (3) Truncated Cube and Cuboctahedron

terstices can be filled with new regular faces. The reverse
process is called contraction. By expanding any regular solid
according to its edges, we derive the “‘truncated™ variety. By
expanding the cube (or the octahedron) according to its faces.
we derive the rhombicuboctahedron, 3.4>. By expanding this
according to its 12 squares which correspond to the edges of
the cube, or by expanding the truncated cube according to is
octagons. we derive the truncated cuboctahedron, 4.6.8. By
contracting the truncated cube according to its triangles, W
derive the cuboctahedron. And so on. Mrs. Stott has represent
¢d these processes by a compact symbolism, and extended

them to Spaces of more than three dimensions, where they arc
extraordinarily fruitful.
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EQUILATERAL ZONOHEDRA

The solids that I am about to describe were first
by ES. F ?dorov.* Thelr Interest has been enhanceq by P.S
Donchl'dn S obser.vat.lon that the)f may be regarded as thr. :
dirlrlenSional projections of n-dimensional hyper-cues Fe-
nwasm.e,polytOpeS., or regular orthotopest). Their ed e a(:r
all equal. and thelr. faces are generally rhombs, but sometimee
higher “parallel-s@ed 2m-gons,” ie., equilateral Zin-gonz
which are symmetrical by a half-turn. The subject begins with
the following theorem on polygonal dissection.

Every parallel-sided 2m-gon (and, in particular, every
regular 2m-gon) can be dissected into $m(m—1) rhombs of
the same length of side. This is easily proved by induction
since every parallel-sided 2(m+ 1)-gon can be derived from a;
parallcl-sidcd 2m-gon by adding a *‘ribbon” of m rhombs. In
(act. the pairs of parallel sides of such a 2m-gon can take any
m different directions, and there is a component rhomb for
every pair of these directions; hence the number sm(m—1).
For two perpendicular directions, the rhomb is a square.

Consider now any sheaf of n lines through one point of
space,§ and suppose first that no three of the lines are coplanar.
Then there is a polyhedron whose faces consist of n(n—1)
rhombs, and whose edges, in sets of 2(n—1), are parallel to
the n given lines. In fact, for every pair of the n lines, there
is a pair of opposite faces whose sides lie in those directions.
To construct this equilateral zonohedron, imagine a plane
through any one of the n lines, gradually rotating through a
complete turn. Each time that this plane passes through one

Investigated

*Zeitschrift fiir Krystallographie und Mineralogie, 1893, vol. XXIL P 689
Nachala Ucheniya o Figurakh, Leningrad, 1953. See also Coxeter, Twelve
Geometric Essays, Carbondale, Illinois, 1968, chap. 4.

tL. Schldfli, Quarterly Journal of Mathematics, 1860. vol. 111, p. 66:
(4, 3. 3. ....3): C.H. Hinton, The Fourth Dimension, London, 1906: P.H.
Schoute, Mehrdimensionale Geometrie, Leipzig, 1905, vol. 1, PP- .
D.M.Y. Sommerville, An Introduction to the Geometry of n Dimensions, London,
1929, pp. 49, 171, 182, 190.

igln how many ways?

§ This construction is due to P.S. Donchian.
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Fifteen Rhombs in a Dodecagon

of the other n—1 lines, take a rhomb whose edges are paralle]
to the two lines, and juxtapose it t(? the rhomb Previously
found (without changing its orientation). This process leads
eventually to a closed ribbon of 2(n—1) rhombs. By fixing
our attention on another of the n lines, we obtain another
such ribbon, having two parallel faces in common with the
first. When a sufficient number of these ribbons (or Zones)
have been added, the polyhedron is complete.

If m of the n lines are coplanar, we have a pair of opposite
parallel-sided 2m-gons, to replace 3m(m— 1) pairs of opposite
rhombs. If these m lines are symmetrically disposed, the
2m-gons will be regular.

In this manner, three perpendicular lines lead to a cube,
and three lines of general direction to a parallelepiped with
rhombic faces. (This is called a rhombohedron only if the six
faces are congruent.) More generally, m coplanar lines and one
other line lead to a parallel-sided 2m-gonal prism (a right prism
if the “other” line is perpendicular to the plane of the first m).

The four “‘diameters™ of the cube (joining pairs of opposite
Verllces_) lead to the rhombic dodecahedron, the six diameters
of the icosahedron lead to the triacontahedron, and the ten

diameters of the (pentagonal) dodecahedron lead to an enned-
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contahedron™ whose faces are 30 rhombs of

of another. The six diameters of the cub

the truncated octahedron, whose faces afeCchseqdur:rr; le'ad 2
hexagons (the equivalent of 8 x3 rhombs), and th: g?d 8
diameters of the icosidodecahedron lead t,o the tru .
icosidodecahedron, whose faces are 30 squares, 20 he:: o
(=20% 3 rhombs), and 12 decagons (=12 x 10 ;hombs) gAOSn;
final example, the nine diameters of the octahedron and
cuboctahedron (taken together in corresponding positions)t
lead to the truncated cuboctahedron, whose faces are 12
squares, 8 hexagons (=24 rhombs), and 6 octagons (=36
rhombs). (See plate 1, figures 10, 18, 24, 16, 26, 19.)

As in these examples, so in general, the solid has the same
type of symmetry as the given sheaf of lines. A rhombic
n(n—1)-hedron having a centre of symmetry and an n-gonal
axis occurs for every value of n, being given by a sheaf of n
lines symmetrically disposed around a cone.f The faces are
all alike when n is 3; they can be all alike when n is 4 or 5, if
the lines are suitably chosen, viz, if the angle between alternate
lines is supplementary to the angle between consecutive lines.
Then n=4 gives the rhombic dodecahedron; n=>5 gives a
rhombic icosahedron§ (plate 1, figure 14) which can be derived
from the triacontahedron by removing any one of the zones
and bringing together the two pieces into which the remainder
of the surface is thereby divided. By removing a suitable zone:
from the rhombic icosahedron we obtain Bilinski’s new
rhombic dodecahedron with faces all alike but different from
those of the classical rhombic dodecahedron.

Fedorov’s general zonohedron can be derived from the
equilateral zonohedron by lengthening or shortening all the
edges that lie in each particular direction. Thus rhombic

one kind and 60

*This somewhat resembles a figure described by A. Sharp, Geometry Im-
prov'd, p. 87.

tLe., perpendiculars to the nine planes of symmetry of the cube (or of the
octahedron).

#B.L. Chilton and H.S.M. Coxeter, American Mathematical Monthly, 1963,
vol. LXX, pp. 946-951.

$Stanko Bilinski, Glasnik, 1960, vol. xv, pp. 252-262.
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grams, and ‘“‘parallel-sided 2
m-
g

parallelo

When each higher face i
Ce IS re
plac

ilateral.
Ons’\

ces hecome
e
d by

cease O be equ

its proper number of parallelograms’ s B
E=2F. anid V=F+ 5 In fact, every convex P01v11edF=n("\ 1

s is a zonohedron.™ yitedron boyy, )

deq

by parallelogram

One final remark on this subject: there is a th
ree-d;

c d]men~

sional analoguc for the theorem that a pa ;
can be dissected 1nto Im(m—1) parallslgglliel-slded 2m-go
he_dron can be dissected 1nto Ly(n—1)(n—2) ms. The zq, .
(viz., one for every three of the n directions) para“elepipe((;~
. S

THE KEPLER-POINSOT POLYHEDRA

By extending the sides
of a regular
: ; penta 3
aga gon
\fhilcrl’ }\]ve‘ cllerwe the star-pentagon or exseriescla till they Hisel
. 1 has long t;een used as a mystic symbol “;)r pentagram,
e pe 5 : . ,
whighnésflr;l:e] t{é} as a generalized polygon hav? may regar
e centre twice. E : » ing five s;
4 . Each sid e sid
n at th ; : 1de su €s
lends a: ;snltge?, whereas each side of an ordilr)ltaends an angle
- v:‘ith-ﬂ/i?_-s"l"hus the pentagram behavery n-gon sub-
e it B p':)&é A{na}logously, any ration.:]aS if it were
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nd the denominator the ‘““density”™ (ilr\'}flg the number
species”).

O % A H

n=

(ST
Wi

n=

wijoe

n=

This proce
SS Of Y 3

The stellat stellation™
sk may als Y
twelve new e of the regular dode 6 be applied In spase
(3, 5] TheSVCrtlces, forming the s (lllhedron ek s

A A ne

new vertices belong alslo ts(t)eggtieé"odOﬁegahedrgn
sahedron. by

-
Coxete
er, Regular Polytopes, New Y
S ork, 1973
s Pa2l



POLYHEDRA 145

inserting the edges of this icosahedron, but keeping the original
twelve facial planes, we obtain a polyhedron whose faces are
twelve ordinary pentagons, while the section near a vertey js
pentagram; this is t.he great dodecahedron* {5, 3}, It is reci-

rocal to 13, 5} as 1ts symbol implies. By stellating the faces
ot 5, 3}, we derive the great stellated dodecahedron, {3, 3}
which has the twenty vertices of an ordinary dodecahedron.
[ts reciprocal, the great icosahedront {3, §}, has twenty tri-
angular faces, and its vertices are those of an ordinary icosa-
hedron. (See plate 11, figures 31, 34, 32, 30.)

Thus we increase the number of finite regular polyhedra from
five to nine. One way to see that these exhaust all the possi-
bilities} is by observing that the *“Petrie polygon™ of {p, g} is
still characterized by the number h, where

cos?(n/h)=cos?(n/p)+ cos®(n/q),

even when p and g are not integers. Writing this equation in
the symmetrical form

cos?(n/p) + cos?(n/q) + cos?(n/k)=1

(where 1/k=%—1/h), we find its rational solutions to be the
three permutations of 3, 3, 4, and the six permutations of
3, 5,3, making nine in all, as required.

p,q) v\ E| F|D Name Discoverer
13,5, [ 1230] 12| 3| Smallstellated dodecahedron | Kepler (1619)
3,31 |20 (30| 12| 7| Great stellated dodecahedron %

5, 3 12 30| 12| 3| Great dodecahedron Poinsot (1809)
(3,3! |12 30|20 | 7 | Greaticosahedron

*The Encyclopaedia Britannica (x1vth edition, article *Solids™) unhappily
calls this the “small stellated dodecahedron,” and vice versa. (CI. the xith
edition, article **Polyhedron.”) o ks, i

tGood drawings of these figures are given by Lucas (in hig:- Brereatiohs
mathématiques), vol. 11, pp. 206-208, 224.

{This was first proved (another way) by Cauchy,
technique, 1813, vol. 1x, pp. 68—86.

Journal de ['Ecole Poly-
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The polyhedra {3, 5} and {5, 3} fail to satisfy . .

V — E+ F=2, which holds for all ordinary . ler S Fofmm,
reason for this failure (which apparently induc: YhEdra_ hd
deny the existence of lhf:se two figures) wil] appeas.chlﬁﬂi* ¢
vii. However, all the nine finite regular Polyheq rin
following extended theorem, due to Cayley . ra sy

dVV—E+d':F=2D,

where d; is the “‘density” of a face (Viz, 1 for an o
polygon, 2 for a pentagram), d, is the density of 3 v(e)rdmar’
rather, of the section near a vertex), and D s the denSilrtex (o
whole polyhedron (i.e. the number of times he facesiofthc
the centre). Ncloge
“*Archimedean”™ star polyhedra have beep investigy,
but are beyond the scope of this book. Baled t

THE 59 ICOSAHEDRA

Imagine a large block of wood with a small letrahedrop ¢
cube (somehow) drawn in the middle. If we make saw.cy.
along all the facial planes of the small solid, and throw ayy,
all the pieces that extend to the surface of the block, nolhin'g
remains but the small solid itself. But if, instead of a tetra.
hedron or cube, we start with an octahedron, we shall be Iefi
with nine pieces: the octahedron itself, and a tetrahedron on
each face, converting it into a stella octangula which has the
appearance of two interpenetrating tetrahedra (the regular
compound mentioned above). Similarly, a dodecahedron leads
to 14+12+30+420 pieces: the dodecahedron itself, twelv
pentagonal pyramids which convert this into the small st.el-
lated dodecahedron, thirty wedge-shaped tetrahedra whlch
convert the latter into the great dodecahcdrqn. and. twen;‘)
triangular double-pyramids which convert this last 1nto the
great stellated dodecahedron.

defined
*Quarterly Journal of Mathematics, 1860, vol. 111, pp. 66. 67. He
(3. 3). (3. 3).”".but not (3, 5). (5. ) ,
tCoxeter. Longuet-Higgins, and Miller. Philosophical T ransactio
Royal Society. 1954, series A, vol. ceXLVI, pp. 401-450.

ns of the
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the icosahedron* leads to 1+ 20430+ 60+ 20+ 60
+120+12+3O+6O+60 pieces, which can be put together
form 32 different reflexible solids, all having the full icosa-
;:: dral symmetry, and 27 pairs of enantiomorphous solids,
ly the symmetry of rotation. The former set of solids
includes the original icosahedron, the compound of five octa-
hedra (made of the first 1+ 20+ 30 pieces), the compound of
(en tetrahedra (made of the first 1 +20+ 30460+ 20+ 60+ 120
ieces), and the great lcqsahedron (made of all save the last
60 pieces). The latter set includes the compound of five tetra-
hedra, and a number of more complicated figures having the
same attractively “twisted™ appearance.t

Finally

having On

SOLID TESSELLATIONS

Just as there are many symmetrical ways of filling a plane with
regular polygons, so there are many symmetrical ways of filling
space with regular and Archimedean solids. For the sake of
brevity, let us limit our discussion to those ways in which all
the edges (as well as all the vertices) are surrounded alike. Of
such *‘solid tessellations™ there are just five,{ an edge being
surrounded by (i) four cubes, or (i1) two tetrahedra and two
octahedra, arranged alternately, or (i11) a tetrahedron and three
truncated tetrahedra, or (1v) three truncated octahedra, or
(v) an octahedron and two cuboctahedra. Let us denote these
by the symbols [4*], [3%], [3%.6%], [4.6%], [3%.4]. which
indicate the polygons (interfaces) that meet at an edge.

The “‘regular™ space-filling [4*] is familiar. It is “self-
reciprocal” in the sense that the centres of all the cubes are
the vertices of an identical space-filling. Its alternate vertices

*A.H. Wheeler, Proceedings of the International Mathematical Congress,
To_ronro. 1924, vol. 1. pp. 701-708: M. Bruckner, Vielecke und Vielflache,
Leipzig. 1900 (plate vii, nos. 2, 26; plate 1x. nos. 3. 6, 11. 17, 20: plate X, no. 3;
plate x1, nos. 14, 24).

tFor J.F. Petrie’s exquisite drawings of all these figures, see “The 59 Icosa-
hciira." University of Toronto Studies (Mathematical Series). no. 6. 1938.

*A. Andreini, Memorie della Societa italiana delle Scienze. 1905, senies 2,
Vol. X1v, pp. 75-129, figs. 12, 15, 14, 18, 33.
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The Solid Tessellation [3*]

give the space-filling [3*], one tetrahedron being inscribed in
each cube, and one octahedron surrounding each omitted
vertex. This has a particularly high degree of regularity (al-
though its solids are of two kinds, unlike those of [4*]); for,
not merely the vertices and edges, but also the triangular inter-
faces, are all surrounded alike; in fact, each triangle belongs
to one solid of either kind. If we join the centres of adjacent
solids, by lines perpendicular to the interfaces, and by planes
perpendicular to the edges, we obtain the “‘reciprocal” space-
filling, say [3*]'; this consists of rhombic dodecahedra, of
which four surround some vertices (originally centres of tetra-
hedra), while six surround others (originally centres of octa-
hedra). .
The space-filling [32.6%] can be derived from [34] by making
each of a certain set of tetrahedra of the latter adhere to,‘ts
four adjacent octahedra and to six other tetrahedrd whic



POLYHEDRA 149

onnect these In pairs, so as to form a truncate
*Crhus [32.67] has half the vertices of [3%], wh?c:ti?lzﬁfrrxol?ﬁ*
half the vertices of [4%]. =
The space-filling of truncated octahedra, [4.6%], is recipro-
cal to a space-filling of “isosceles™ tetrahedra (or, tetragonal
bisphenoids) whose vertices belong to two reciprocal [4*]’s
(the “body-centred cubic lattice” of crystallography). The
vertices of [3?.4] are the mid-points of the edges (or the centres
of the squares) of [4*].

BALL-PILING OR CLOSE-PACKING

A large box can be filled with a number of small equal spheres
arranged in horizontal layers, one on top of another, in various
ways, of which I will describe three. It might be filled so that
each sphere rests on the top of the sphere immediately below it
in the next layer, touches each of four adjacent spheres in the
same layer, and touches one sphere in the layer above it ; thus
each sphere is in contact with six others. Or we might slightly
spread out the spheres of each layer, so as to be not quite in
contact, and let each sphere rest on four in the layer below and
help to support four in the layer above, the *“‘spreading out”
being adjusted so that the points of contact are at the vertices
of a cube. We might also fill the box with spheres arranged so
that each of them is in contact with four spheres in the next
lower layer, with four in the same layer, and with four in the
next higher layer. This last arrangement is known as normal
piling or spherical close-packing; it gives the greatest number
of spheres with which the box can be filled. (Although it is
impossible for one sphere to touch more than twelve others of
the same size, we shall see later that there are many different
ways of packing equal spheres so that each touches exactly
twelve others.)

These three arrangements may be described as follows. In
the first, the centres of the spheres are at the vertices of the

space-filling [44], and the spheres themselves are inscribed in
s 63, (3.6)% 3*.6 may be derived

*Analogously, any of the plane tessellation
es coalesce to form hexagons.

from 3° by making certain sets of six triangl
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ciprocal [4*] In the second, (e

bes of the re Sphel‘cs

. the truncated octahedra of [4.62] (touchy, i
R th,

just missing the squares). In the thjrq_ the
in the rhombic dodecahedra of [34], ) Phere,
e vertices of [3*]. 0 gy

ces of [3*] form triangular tessellatiq

hexagons, but
are inscribed
centres are al the

Now, the verll

q series of parallel planes. ns 3o
A A 4 )
B B B
C C C .
A A P
B B B ;
& C o
A A 4 )
B B B
& C C .

Our figure shows a “plan™ of this arrangement of points,
projected orthogonally on one of the planes, which we take
to be horizontal. The points 4 are projected from one plane,
the points B from the next, C from the next, 4 again from the
next, and so on, in cyclic order. Now imagine solid spheres
centred at all these points. The points A give a layer of close-
packed spheres, each touching six others. The points B repre-
sent another such layer, resting on the first; each sphere of
elt'her touches three of the other. The points C represent a
‘l'}'fd layer, resting on the second ; but an equally *‘economical”
piling of spheres is obtained if the centres of the third layer li
above the points A again, instead of lying above the points C.

;\"d *0.atevery stage, the new layer may or may not lie vertical-
y above the last byt one.
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(1 Rhombic Dodecahedron (2) Trapezo-rhombic Dodecahedron

The arrangement A BCA B C. .. represents spherical close-
packing; on the other hand, the arrangement ABABAB ...
is known as hexagonal close-packing. In both cases space is
filled to the extent of 74 per cent. If a large number of equal
balls of “‘plasticene” or modelling clay are rolled in chalk,
packed in either fashion, and squeezed into a solid lump,
those near the middle tend to form rhombic dodecahedra or
trapezorhombic dodecahedra* respectively. If, instead of being
carefully stacked, the balls are shaken into a random arrange-
ment as dense as possible, and are then squeezed as before, the
resulting shapes are irregular polyhedra of various kinds. The
average number of facest is not 12 but about 13-3. Equal
spheres arranged in such a random piling have not been proved
to occupy less space than the same spheres in normal piling;
but it is clear that any small displacement will increase the
total volume by enlarging the interstices.

If you stand on wet sand, near the sea-shore, it is very notice-
able that the sand gets comparatively dry around your feet,
whereas the footprints that you leave contain free water. The
following explanation is due, 1 believe, to Osborne Reynolds.
The grains of sand, rolled into approximately spherical shape

*Cf. Steinhaus, Mathematical Snapshots, New York, 1938, p. 88.
' 1J.D. Bernal, Nature, 1959, vol. CLXXXIIl, pp. 141-147; Coxeter, Introduc-
tion to Geometry, pp. 410-412.
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REGULAR SPONGES

The definition of regularity on page .131 depends on two Sym.
metries, which, in every case so far discussed, are rotations. By
allowing the number of vertices, edges, and .faces to be infinite
this definition includes the plane tessellations {3, 6}, {¢, 3}:
{4,4}. It would be absurd to allow each face to have infinite]y
many sides, or to allow infinitely many .faces to surround ope
vertex : therefore the special symmetries must be periodic,
However, they need not be rotations; they may be rotatory-
reflections. (A rotatory-reflection is the combination of a rota-
tion and a reflection, which may always be chosen so that the
axis of the rotation is perpendicular to the reflecting plane.)
Such an operation interchanges the ““inside” and “‘outside” of
the polyhedron; consequently the inside and outside are iden-
tical, and the polyhedron (dividing space into two equal parts)
must be infinite. The dihedral angles at the edges of a given face
are alternately positive and negative, and the edges at a vertex
lie alternately on the two sides of a certain plane. This allows
the sum of the face-angles at a vertex to exceed 2.

It can be proved that the polyhedra {p, g} of this type are
given by the integral solutions of the equation

2 sin (n/p) sin (n/q) = cos (n/k),

namely {6, 6} (k=3), {6, 4} and {4, 6} (k=4), {3, 6} (k="6), and
4, 4} (k=?0). The three plane tessellations occur because 2
Plane rotation may be regarded indifferently as a rotation it

Space or as a rotatory-reflection. The three new ffgures o
Sponges” with k-gonal holes *

*
E
wher:r(hih?hl?graphs of models, see Coxeter, Twelve Geometric Essays. P- 77.
€€ sponges are denoted by {6,6]3}, {6,4|4}, {4,6]4}.



The faces of {6, 6} are the hexagons of the solid tessellation
[32.67];those of {6,4} are the hexagons of [4.62]; and those of
{4, 6} are half the squares of [4*]. The remaining interfaces of
the solid tessellations appear as holes. The last two sponges
(discovered by J.F. Petrie in 1926) are reciprocal, in the sense
that the vertices of each are the face centres of the other ;* {6, 6}
is self-reciprocal or, rather, reciprocal to another congruent
{6, 6}.

To make a model of {6, 6}, cut out sets of four hexagons (of
thin cardboard), stick each set together in the form of the hexa-
gonal faces of a truncated tetrahedron (3.6%), and then stick
the sets together, hexagon on hexagon, taking care that no
edge shall belong to more than two faces. (In the finished model,
the faces are double, which makes for greater strength besides
facilitating the construction.) Similarly, to make {6, 4}, use
sets of eight hexagons, forming the hexagonal faces of trun-
cated octahedra (4.62). Finally, to make {4, 6}, use rings of
four squares. This last model, however, is not rigid; ‘it can
gradually collapse, the square holes becoming rhombic. (In
fact, J.C.P. Miller once made an extensive model and mailed

it, flat in an envelope).
n this sense, but finite polyhedra

hedron are the vertices of a cube.
tres of the faces of another

*Plane tessellations can be reciprocal i
can_nol. The centres of the faces of an octa
while the vertices of the octahedron are the cen

(larger) cube,
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ROTATING RINGS OF TETRAHEDR 4

J.M. Andreas and R.M. Stalker have independeml n
o family of non-rigid finite polyhedra having 7,, ve COverg
edges (of which 21 coincide 1n pairs), and 4y triang "
aCQS‘

ular ¢

for n=6 or 8 or any greater integer. The faces are th
tetrahedra. joined together in cyclic order at a certaj
opposite edges of each, so as to form a kind of ring, Whep, n=6
the range of mobility is quite small, but when n=8§, the riné
can turn round indefinitely, like a smoke-ring. When n is even,
the figure tends to take up a symmetrical position; it is partj.
cularly pretty when n=10.* When n is odd, the entire lack of
symmetry seems to make the motion still more fascinating
When n=22, the ring can occur in a knotted form.

A model of any such ring may be made from a single sheet
of paper. For the case when n=6, copy the above diagram, cut
it out, bend the paper along the inner lines, upwards or down-
wards according as these lines are broken or dotted, and stick
the flaps in the manner indicated by the lettering. The ends
have to be joined somewhat differently when n is a multiple
of 4 (see figure xxx1v, page 216). When n is odd, either method
of joining can be used at will. _

Since there are two types of edge, such a polyhedron is not
regular, and no symmetry is lost by making the triangleS_ e
celes instead of equilateral. If the doubled edges are sufficiently

08¢ of ),
N pair of

lecke und

*One of the “Stephanoids™ described by M. Briickner in his Vie -
lar te[fd

:]".:j”/""”(’- P- 216 (and plate vi11, no. 4) consists of a ring of ten irregy
cdara.
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hor Compured to the others, the ring with n=6* can be made
sh

(urn completely, like the rings with n>8.
{o

THE KALEIDOSCOPE T

The ordinary kaleidoscope consists esse.ntially of two plane

. cors, inclined at /3 or /4, and an object (or set of objects)
mllfced in the angle between them so as to be reflected in both.
?}?e result is that the objgct 1s seen 6 or.8 times (according to
he angle), in an attractively symmetrical arrangement. By
making a hinge to connect two (.unfrarrgec'l) mirrors, the angle
petween them can be .varled- at will, anfi it is clear that an angle
a/n gives 21 images (including the object itself). As a h.mmpg
case, we have two parallel Mrrors apd a theoretically infinite
number of images (restricted in practice only by the brightness
of the illumination and the quality of the mirrors). If the object
is a point on the bisector of the angle between the mirrors, the
images are the vertices of a regular 2n-gon. If the object is a
point on one of the mirrors, the images coincide in pairs at
the vertices of a regular n-gon. The point may be represented
in practice by a candle, or by a little ball of plastic clay or putty.

Regarding the two mirrors as being vertical, let us introduce
a third vertical mirror in such a way that each pair of the three
mirrors makes an angle of the form 7/n. In other words, any
horizontal section is to be a triangle of angles n/l, n/m, n/n,
where . m. n are integers. The solutions of the consequent
equation

1,11
| m n

are 3,3, 3: 2,3, 6; 2, 4, 4. In each case the number of images
is infinite. By varying the position of a point-object in the
triangle, we obtain the vertices of certain isogonal tessella-

*Such a ring (of six tetragonal bisphenoids) has been on sale in the United
States as a child’s toy, with letters of the alphabet on 1ts 24 faces. (Patent
No. 1,997,022, issued in 1935.) See also M. Goldberg, Journal of Mathematics
and Physics, 1947, vol. xxvi, pp. 10-21.

tE. Hess, Neues Jahrbuch fiir Mineralogie, Geologie und Palaeontologie,
1889, vol. 1, pp. 54-65.
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€

of page 106, the
positions are as 1n

3.
3¢ T
6; 2464 431
& . &
3 (36)7 ¥ (367 3122 e?

The network of triangles, which the mirrors appear to C
may be coloured alternately white and black. By taking 4
suitable point within every triangle of one colour (but 1gnoringe
the corresponding point within every triangle of the othe;
colour), we obtain the vertices of 3° (again), 3*.6,and 32 4. 3.4,
respectively. (The remaining uniform tessellation, 33.42, is 1o
derivable by any such method.) The above diagrams reves|
many relationships between the various tessellations: that the
vertices of 3° occur among the vertices of 62, that the vertices
of 62 trisect the edges of (another) 3¢, that the vertices of one 4*
bisect the edges of another, and so on.

[f the third mirror is placed horizontally instead of vertically
—Le. if the two hinged mirrors stand upon it — the number of
images is no longer infinite; in fact, it is 4n, where n/n is the
angle between the two vertical mirrors. For a point on one
of the vertical mirrors, the images coincide in pairs at the
vertices of an n-gonal prism. Two of the three dihedral angles

Ieate,

*Placing a lighted candle between three (unframed) mirrors, the reader “’(;ll
>t¢ an extraordinarily pretty effect. The University of Minnesota has mac

(“;“;IOf l(}*]i; dea in two short films : Dihedral Kaleidoscopes and The Symmeiris
1 the Cube.
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cen pairs of the t.hree MIITOrs are now right angles. A
qural generalization is the case where these three angles .are
Il a/m, n/n. o .

Since, for any reflection in a plane mirror, object and image
2 equidiSt?m frpm the plglne, we egsnly see that all the images
of 2 point in .thlS genc?rallzefi kaleidoscope liec on a sphere,
whose centre is the point of intersection of the planes of the
(hree MIrrors. On the sphere, these planes cut out a spherical
riangle; of angles /I, n/.m, n/n. The resulting image-planes
Jivide the whole sph§r§: into a petwork (or “map”) of such
iriangles, each containing one image of any object placed
within the first triangle. The number of images is therefore
equal 10 the number of such triangles that will suffice to fill
the whole spherical surface. Taking the radius as unity, the
area of the whole sphere is 4m, while that of each triangle is
(n/)+ (m/m)+ (7/n) — . Hence the required number is

4 /(1+1+1_1).
[ m n

Since this must be positive, the numbers [, m, n have to be
chosen so as to satisfy

1+l+l>1.
| m n

This inequality has the solutions 2,2,n;2,3,3:;2,3,4;2,3,5.
The first case has already been mentioned ; the rest are depicted
on page 158 (by J.F. Petrie).

For a practical demonstration, the mirrors should in each
case be cut as circular sectors (of the same fairly large radius),
whose angles* are equal to the sides of a spherical triangle of
angles n/l, m/m, /n.

By varying the position of a point-object in the spherical
triangle (or in the solid angle between the three mirrors) we

*In the three cases. these angles are respectively: 54°44', 54°44', 70°32"

35°16', 45°, 54°44'; 20°54', 31°4%', 37°23".
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obtain the v<;rtices of certain isogonal polyhedra. In particular
if the point 18 0N ONE of the edges where two mirrors meet, or
on one of the mirrors and equidistant from the other two’ or
,t the centre of & sphere which touches all three, then the faces
of the polyhedra are regular polygons. The manner in which

the various uniform polyhedra arise* is indicated in the
following diagrams, analogous to those given for tessellations

34 38
34

3.6% 3.62

(3.4)2

(3.4)2 3.8% (3.5)*

By taking a suitable point within each white (or black)
triangle,t we obtain the vertices of 3°.n, 3°, 3*.4, or 3%.5,
respectively. It has already been remarked that the snub cube
34 4 exists in two enantiomorphous forms; the vertices of one
form lie in the white triangles, those of the other in the black.
The same thing happens in the case of the snub dodecahedron,
34.5.

By introducing a fourth mirror, we obtain solid tessellations.
Tetrahedra of three different shapes can be formed by four
planes inclined at angles that are submultiples of 7. These three
shapes can conveniently be cut out from a rectangular block
of dimensions 1 x /2 x /2. Suppose ABCD to be a horizontal
square of side /2, at height 1 above an equal square A'B'C'D".
After cutting off the alternate corners A', B, C', D, by planes
through sets of three other vertices, we are left with the tetra-
gonal bisphenoid AB'CD’, which is one of the required shapes.

*See Mobius, Gesammelte Werke, 1861, vol. 11, p. 656, figs. 47, 51, 54,
W.A. Wythoff, Proceedings of the Royal Academy of Sciences, Amsterdam,
1918, vol. xx, pp. 966-970; G. de B. Robinson, Journal of the London.M athema-
tical Society, 1931, vol. vi, pp. 70-75; H.S.M. Coxeter, Proceedings of the
London Mathematical Society, 1935, series 2, vol. XXXv1i1, pp- 327-339.

tMoébius, loc. cit., figs. 46, 49, 53.
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js any on¢ of the corner pieces that were Sk
\n:l;;(ch (T\'\'O such pieces Cfln .bc tlt(?d together (o m‘a }lc}\
as - just like 4B CD") The thirdis Oblill.ned. by c““ingABg .
o bl s its plane of symmetry, which is the Plane BB‘g

where E is the mid-point of AC. One half is AEBB’. Noe that
the edges AE, EB, BB’ are three equal lines in three perpendi.
cular directions.

A point-object in such a tetrahedron will give rise to the
vertices of a solid tessellation in various ways,* some of which
are indicated in the following diagrams (which show AB'cp
ABCB', AEBB', in the same orientation as before). ‘

Five mirrors can be arranged in the form of certain triangular
prisms; these lead to solid tessellations of prisms. Six can be
arranged rectangularly in three pairs of parallels, as when we

Andrein, loc. cit. (p. 147 above), figs. 17-24 bis.
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ADDENDUM

Note. Page 143. A rhombohedron s a parallelepiped bounded by six congruent
chombs. [t has Lwo opposite vertices at which the three face-angles are equal; it
is said to be acule or obtuse according to the nature of these angles. A golden
hombohedron has faces whose dmgorlals are in the “golden” ratio t : | (see
page 56). The Japanese architect Koji Miyazaki observed in 1977 that ten
golden rhombohedra, five acute (A,) and five obtuse (O), can be fitted together
(o form a rhombic icosahedron (Fy), and that two rhombic icosahedra, sym-
metrically placed with acommon “obtuse™ vertex, can be surrounded by further
rhombohedra (thirty acute and thirty obtuse) to form a large rhombic
icosahedron whose edges are twice as long; symbolically

30 A, + 300, +2Fy=Fy 2.

Consequently the whole space can be filled with golden rhombohedra so as to
form a honeycomb having a pentagonal axis of symmetry.

A different space-filling of A's and O,'s was discovered independently, at
about the same time, by Robert Ammann in Massachusetts. He was seeking a
3-dimensional analogue for Roger Penrose’s non-periodic tilings of the plane
(see the Mathematical Intelligencer, 1979, vol. u, p. 36). Ammann's procedure
was extended by the Japanese physicist Tohru Ogawa, whose idea is to iterate
the construction

S A, +340,= A, 1Y, A, +210,=0,1°%

Since the volumes of A, and O, are in the ratio tto |, Ogawa’s hierarchic rule
tlustrates the identities

551t +34=r1' ¥ +20=1°

(which involve the same consecutive Fibonacci numbers 21, 34, 55 as the
paradox on page 86, although now everything is cxz.lc!).lSmcc ‘all the cdgcs.of
this quasilartice are parallel to the six diameters joining pairs of OPPPF'IC
vertices of the regular icosahedron, icosahedral symmetry occursina sm"f'c'}
sense, agreeing with the apparent icosahedral symmetry ol C"‘“"“_’f"oﬁ 9
aluminium and manganese (see A.L. Mackay, Nature, 1986, val. eoexXs pR:
102-104).



