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3.1. Introduction 

As was promised in the preface to Par t  I in this Zeitschrift 46, 3 8 0 4 0 7  (1940), 
this third and final ' P a r t '  deals mainly with uniform polytopes  in six, seven 
and eight dimensions. But let us begin with a brief recapitulat ion of  Parts  I 
and I I  and a sum m a ry  of  the present Par t  III .  

A po lygon  is said to be uniform if it is regular. A convex poly tope  is said 
to be uniform if its facets (or cells) are uni form and its symmetry  g roup  is 
transitive on the vertices. The uniform polyhedra  are the Platonic and Archime-  
dean solids a long with the regular prisms and antiprisms. A uniform po ly tope  
in 4 dimensions is determined by its vertex figure: the section by a hyperplane  
th rough  points  at unit  distance f rom one vertex A along all the edges issuing 
f rom A. This is a po lyhedron  H having, for each p-gon at A, an edge of  length 
2 cos ~/p. The faces o f / 7  are, of  course, vertex figures of  uniform polyhedra  
[25, p. 434]. By examining all such polyhedra  / /  inscribed in spheres with radius 
less than  1, J.H. C o n w a y  made  a complete list of  convex uniform polytopes  
in 4 dimensions, with the conclusion that  all but  one of  them can be obta ined  
by means  of  a cons t ruc t ion  first used by W.A. Wythoff.  The set of  vertices 
is the orbi t  of  a suitable point  for one of the finite reflection groups  ( 'Weyl  
groups ' )  or for the ro ta to ry  subgroup of  such a group.  This const ruct ion suggests 
a systematic no ta t ion  for the polytopes,  which was developed in Parts  I and  II. 
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The idea of representing a reflection group by a graph of 'dots and links' 
occurred to me in 1931 [12, p. 133; 14, p. 619]. Ten years later, Witt [57, p. 301] 
proposed a slightly modified version of the graph, replacing a link marked 
q by an unmarked (q-2)-fold link (which agrees neatly with the absence of 
a link when q =2). This 'Dynkin diagram' has been found useful for many 
purposes [26, pp. 519-547; 54]. It was quite independently rediscovered by Dyn- 
kin [29; 30], suggesting the possibility that the best ideas (such as non-Euclidean 
geometry) are not merely invented but somehow lying in wait to be revealed. 

The existence of Conway's 'grand antiprism' (w indicates that spaces 
of more than four dimensions may be expected to admit many uniform polytopes 
whose symmetry groups are not generated by reflections. Their classification 
will provide an interesting task for future geometers. Part III is restricted to 
polytopes derived from reflection groups by Wythoffs construction, and especial- 
ly to the polytopes Pqr (=Prq) which come from the 'sporadic' Weyl groups 
En (n=p+q+r + l). 

As we saw in w 2.2 (on page 563 of Part II), the fundamental region for 
the symmetry group of a regular polytope is a spherical orthoscheme: a simplex 
ABCD... whose 'successive' edges AB, BC, CD,... are mutually perpendicular. 
In w we shall see how the fundamental region for each En (n__<9) can be 
dissected into three orthoschemes, two of which are oppositely congruent. Their 
contents are expressed in terms of Schl/ifli functions, providing an interesting 
formula for the order of E, as a function of n. 

We shall see in w 3.6 that the three polytopes Pqr, qrp, rpq exhibit a relation 
of triality, analogous to the duality that relates two reciprocal regular polytopes 

{p,q,...,w} and {w,...,q,p}. 

w 3.7 and w 3.8 include descriptions of the correspondence between the polytopes 
231, 142 and certain configurations discovered by Hirschfeld and Longuet-Hig- 
gins, respectively. Finally, in w 3.9 we will discuss some properties of the so-called 
'Coxeter transformation' R 1 R2... Rn. 

3.2. The ' Classical' Reflection Groups 

In Chapter XI of Regular Polytopes [21, pp. 188-196], reducible reflection 
groups were seen to be direct products of irreducible groups, each generated 
by reflections in the facets of a simplex: spherical or Euclidean according as 
the group is finite or infinite. Such a simplicial kaleidoscope is represented by 
a graph of 'dots' and 'links', with a dot for each mirror (that is, for each 
facet of the simplex) and a link for each acute dihedral angle r~/q, marked q 
whenever q > 3. 

The 4-dimensional kaleidoscopes (using 4 or 5 mirrors) were described in 
w 2.2 (on pp. 563-567). In 5 dimensions, the three finite groups ('Weyl groups') 
are 
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/, 
\ 

[34] =As = ~6 [ 32'1'~ ] =D5 

with orders 6 ! 2 4. 5 ! 

and the four infinite groups are 

4 

[4, 33] =B5_-__(~2'~ ~5 

2s5! 

[316]] = A 5 [31'1, 3, 31'1] =/)5 [4, 32, 31'1] =/~ s [4, 33, 4] =C5 

[6, p. 199; 34, pp. 57, 60]. Analogously when n>  5, we have the finite groups 

[3"-1] = A , ~ , + I ,  [3"-3,1,1] =D, ,  [4 ,3n -a]=B '~2%~,  

(see w 2.5, pp. 573-574), and the infinite groups 

[3 t"+11] =A, ,  [31'1, 3 "-4, 31'x] =/3,, [4, 3 n-3, 31'1] =/~,, [4, 3 "-2, 4] =C, .  

The treatment of A4 in w 2.6 (page 578 of Part II) extends easily to A, [see 
also 26, pp. 151-153]. 

B, is, of course, the complete symmetry group of the n-cube 7, = {4, 3"-2} 
and of its reciprocal, the cross polytope {3 n-z,  4} [21, p. 158]. For an n-cube 
of edge-length 2, the 2" vertices have coordinates 

(+1, +1, ..., +1) 

and the 2n bounding hyperplanes are x~ = _+ 1 (v = 1, 2, ..., n). The sections by 
the sequence of hyperplanes 

x l + x 2 + . . . + x , = v  with v=n-2 ,  n-3 ,  n -4 ,  n-5 ,  n-6, . . .  

can be identified as truncations of the vertex figure c~,_ 1 = {3 "-1} (see w 2.5 on 
pages 573-574), namely 

0Cn- 1 = t 0  ~n- 1, t0,1 ~n-1, t l  ~n-1, tl,2 ~n-1, t2 ~n-1, . . .  

[23, p. 127]. In particular, the section by xl +x2+ ... + x , = n - 2 r  is tr-1 7,-1 

~3r-1 1} [21, 157, 239]. = ( 3 , - r -  PP. 

Extending the procedure of w 2.2 (pp. 565, 567), we see that D, is a subgroup 
of index 2 in B,, likewise /5, in /~,, and /~, in C,. Since B, has order 2"n !, 
D, has order 2" - in  !. In fact, D, is the symmetry group of the half-measure- 
polytope or 'hemi-cube' 
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whose vertices are alternate vertices of the n-cube 7,. For instance, 

h ~ 2 = ~  1, h73=0~3,  h ~ g = f 1 4  

(see w 2.5 on page 574 and w 2.6 on page 581). 
The n mirrors for D. may conveniently be taken to have the equations 

X1 =X2~ X2 = X 3 ,  X3 =X4~ . . .~Xn- l=Xn,  

x 1 + x2 = 0, 

so that a typical vertex of hy,  (given by x l=x2  . . . . .  x, and xl+x2+O) is 
(1, 1 . . . .  ,1). The transpositions 

(1 2), (2 3), (3 4), ..., (n - 1 n) 

generate a symmetric subgroup [3"-3,1,o] = [3 , -2]  = ~ , .  The remaining genera- 
tor transposes xl and xz while reversing the signs of both. Thus the 2"-1 vertices 

of hT, (of edge 2~/2) are 
( + 1 , + 1  . . . .  , + 1 )  

with an even number of minus signs. For the complementary hT, with an odd 
number of minus signs, the typical vertex ( - 1 ,  1, ..., 1) is given by xl +x2 
and - x l  =x2=x3= ... =x, .  

By removing one or two dots from the ringed graph for hT, we obtain 
symbols for its various faces and their groups of stability. Then (as in [21, 
p. 202] for 221) we can apply page 572 of Part II to find that hT, has 

2n-in !/n ! = 2  "-1 vertices, 2n-in !/22(n - 2 ) !=2n-z  (~)edges ,  

1( n ) s i m p l e x e s ~ k  ( 2 < k < n - 1 )  2 " - l n ! / ( k + l ) ! ( n - k - 1 ) ! = 2 " -  k + l  

( 3 < k < n - 1 )  

tetrahedra.) 

2n h 7,_ l'S 

and 

2n-1 n! /2k- lk[(n_k)!=2n-k(~)  hyk'S 

[11, p. 364]. (Since e3 =h73,  the 3-faces consist of 

In particular; the facets consist of 

2 n - 1 ' and ~n-1 S 

corresponding to the 'remaining' vertices and the facets of 7,. 
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Other uniform polytopes 

h2 ];n, h3 ~/n, h2,37 . . . . . .  h2,3 ...... -17n,  

having the same symmetry group, are obtained by inserting extra rings. For 
instance, h2,3 Y5 is 

Since the fundamental region satisfies the inequalities 

X1 -t- X2_~ 0, X I ~ X 2 ~ X 3 5 ~ X 4 ~ X 5 ,  

the 245 !/2 x 2=  480 vertices of this polytope are given by applying D s to the 
typical vertex 

(1, l, 3, 5, 5), 

which comes from the equations 

X I ~ X 2 ,  X 4 ~ X 5 ,  X I @ X 2 ~ X 3 - - X 2 ~ X 4 - - X 3  . 

We recall from w (p. 575) that, when the dots representing xl + x 2 = 0  
are both ringed, or neither, the polytope belongs to the family of r and 7,. 

It is interesting to observe that D, is isomorphic to the group of automor- 
phisms of certain configurations in Euclidean 3-space and the inversive plane 
1-19, pp. 138-141; 20, pp. 258-262]. Let al, a2 . . . .  be n planes through a point 
S, let Sz, be an arbitrary point on the line of intersection a~.a , ,  and let 0.z,v 
be the plane S~uS~vSu~. Then the four planes 0"123, 0"124, 0.134, 0.234 all pass 
through one point, say $1234 (because 0-1 0.2 0.3 0.123 and 0.124 0.134-0.2340.4 are 
a pair of M6bius tetrahedra, each inscribed in the other). Moreover, the five 
points  S1234 , $1235 , S1245 , $1345 , $2345 all lie on one plane 0.1234s; the six 
planes whose subscripts are five of the numbers 1, 2, 3, 4, 5, 6 all pass through 
one point S123456 ; and so on. This chain of theorems, due to Homersham 
Cox, yields a self-dual configuration of 2"-1 points and 2 "-1 planes, with n 
of the planes through each point and n of the points on each plane. 

Instead of defining S~, to be an arbitrary point on the line az'0.,, we may 
take it to be the second intersection of that line with a fixed sphere through 
S. Then each plane yields a circle, and we have a configuration of 2"-1 points 
and 2"-1 circles on the sphere or, by stereographic projection, on the inversive 
plane. The corresponding chain of theorems about circles is due to W.K. Clifford. 

By interpreting the subscripts of S or 0. as the positions of the positive 
l 's in the coordinate symbol ( + l ,  _+1 . . . .  , +_l), so that S and 0.1 represent 
the points ( - 1 ,  - 1  . . . . .  - 1 )  and (1, - 1  . . . . .  -1) ,  we relate the 2 "-1 points 
to the vertices of hT,, and the 2"-1 planes (or circles) to the remaining vertices 
of ?,. Thus D, is the group of automorphisms of either configuration, while 
B, is the whole group of automorphisms and dualities. 

For  the infinite group 13, (n >4), the n +  1 mirrors of the kaleidoscope may 
conveniently be taken to have the equations 
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X 1 ~-X 2 = 0 ,  X n -  1 = Xn, 

X 2 = X 3 ,  X3 = X 4 ,  . . . ,  X n - 2 = X n _ l ~  

Xt = X 2 ,  X n - l  + X n =  1 

[9b, p. 457]. More precisely, the fundamental region satisfies the inequalities 

xl + x 2 > 0 ,  x l < x 2 <  ... < X , _ l < X , ,  X , _ l + X , <  1, 

and the four special vertices (indicated by dots that belong to only one link, 
and determined by n of the n + 1 equations) are 

1 1 (~,~ . . . . .  ~,�89 (0,0 . . . .  , 0 ,1 ) ,  

( 1 1 ~,~ . . . . .  1, k), (0,0 . . . . .  0,0) 

[9b, p. 461]�9 The first mirror reflects (Xl, x2 . . . .  ) into ( - x 2 ,  - x ~  . . . .  ), while 
the last reflects ( .... x,_ 1 x,) into (..., 1 - x , ,  1 - x , _  1) and the remaining mirrors 
generate the symmetric group on the n coordinates. Hence 15, is generated by 
the permutations of the coordinates along with the change of any two different 
coordinates from (x~, x~) to ( - x ~ ,  -x~) or (xu+ 1, x~+ 1). 

Putting a ring round the last dot (indicating the mirror X , _ l + X . = l ) ,  we 
obtain the 'half cubic honeycomb' h6,_ x, whose typical vertex, given by 

- - X 2 = X I  = X 2  = . . .  =Xn~ 

is the origin. Applying/3, ,  we see that all the vertices are just the points whose 
n coordinates are integers having an even sum [21, p. 158]. (These points form 
a lattice, since their position vectors belong to an additive group.) By removing 
one of the three untinged special dots from the graphical symbol for h6,+1, 
we see that the cells of the honeycomb are/~, and hy,.  

The 'quarter cubic honeycomb' q6,+ 1 [19, pp. 4748]  (which is not a lattice) 
is derived from the graph for 13, by putting rings round two dots: one at the 
left end and one at the right end, say the first dot and the last. Accordingly, 
a typical vertex, given by the equations 

X I = X 2  = . . .  = X n ,  X I + X 2 = I - - X n _ I - - X n ,  

is (�88 �88 . . . .  ,�88 �88 The mirrors Xl +x2 = 0  and x,_ 1 + x ,  = 1 reflect this to 

i 1 ( 1 �88188 ~,~) and (�88188 1_3 3~ 
�9 4 ,  4 ~  4 ] "  

Before applying other operations belonging to the group/5,,  we may convenient- 
ly make a change of coordinates 

- - 1  1 y~=2x~--�89 or x~-z(y~+~), 

so that those three vertices becomes 

(0,0, ..., 0,0), ( - 1 , - 1 , 0 ,  ..., 0), (0, ..., 0, 1, 1) 

and/5,  is now generated by the permutations of Yl, -.-, Y, along with the change 
from (y,, y~) to ( - Y u -  1, - y ~ -  1) or (y ,+2,  yv+2) (with/~+v). 
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We conclude that the vertices of q6,+~ can be selected from the totality 
of points having n integral coordinates (that is, from the vertices of the n-dimen- 
sional cubic lattice 6,+1) by the following rule: i f  m~ o f  the coordinates are 
congruent to K (mod 4), so that mo+ ml +jm2 + m3 = n, then 

m 1 ~-m 2 ~ m  3 (mod 2). 

To verify this rule, suppose the residues (mod 4) of (Yu, Yv) are 

(0,0), (1,0), (2,0), (3,0), (1,1), (2,1), (3,1), (2,2), (3,2), (3,3). 

Then subtraction from - 1 (or 3) yields 

(3,3), (2,3), (1,3), (0,3), (2,2), (1,2), (0,2), (1,1), (0,1), (0,0), 

while adding 2 yields 

(2,2), (3,2), (0,2), (1,2), (3,3), (0,3), (1,3), (0,0), (1,0), (1,1). 

In every case, the three numbers ml, m 2, m 3 are either all changed by 1 or 
else all changed by 0 or 2. 

By removing one of the special dots from the graphical symbol for q6,+~, 
we see that the cells of this honeycomb are h7, and h,_ 1 7,, reducing to /34 
and tl 74 when n = 4  (see page 575 of Part II). In fact, the graphical symbol 
implies q 35 = t 1 65, since when n = 4 the four special dots are no longer separated 
into two pairs ('left' and 'right') as they are when n > 4. 

Although analogy makes it reasonable to define D3=A3, /~3=A3 and h64 
=c%h [11, p. 368], the meaning of q6,+1 when n = 3  is not immediately clear. 
However, the description in terms of coordinates remains valid: it yields the 
permutations of the 3-dimensional coordinates 

(0, O, 0), (1, 1, 0), (2, 2, 0), (3, 3, 0), (3, 2, 1) 

(mod 4), which are easily recognized as the vertices of the honeycomb q64 of 
tetrahedra and truncated tetrahedra described on page 402 of Part I, that is, 
the honeycomb whose hexagonal faces form the regular skew polyhedron 
{6, 613} [19, p. 77]. 

3.3. The Sporadic Reflection Groups E. and E. 

Euclidean spaces of 6, 7 and 8 dimensions admit, along with the 'classical' 
groups, the 'sporadic'  groups 

[3 n-4'2'1] = E  n (n=6,  7, 8), 

[- 32'2'2] ~---/~6, [-33'3'1] ~--ET, [ 35'2'1] : /~8 .  

For some purposes it is desirable to augment this family so as to include the 
infinite group E9=/~  8 and, by gradually cutting off the longest 'tail '  of the 
graph, 

E 5 = [3 l'z't ] =Ds ,  E4=  [3 ~ ] = [33] = A , ,  E3 = A 2  x A1. (3.31) 
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Numbering the generators of E,  in the order 

2 3 4 5 n 

we see that the general presentation 

(R, Rv) "-~ = 1 (quu = 1) 
[-21, p. 188] becomes 

R 2 = (Rt R 4 )  3 = (R2 R 3 )  3 = ( R 3  R 4 )  3 --: . . .  = (R,_ 1 R,) 3 = 1, 

while all other pairs of generators commute (qu~ = 2). To compute the order 
7 2 x 6 !  of E 6 ,  w e  can enumerate the 27 cosets of the subgroup Es=D5 (of 
order 245 !) generated by R~, R2, ..., Rs,  or the 72 cosets of the symmetric 
s u b g r o u p  ~ 6 - = A 5  generated by R 2 ,  . . . ,  R 6. To compute the order 8 x 9 !  of 
ET, we can enumerate the 56 cosets of the subgroup E 6 generated by R1, 
R2 . . . . .  R 6. Finally, to compute the order 192 x 10 ! of Es, we can enumerate 
the 240 cosets of the subgroup E7 generated by R1, R 2  . . . .  , R 7. 

The groups A,, D,, E., A,, D,, E, are said to be trigonal because in these 
cases every q,~ = 2 or 3, and thus the graph has no marked (or repeated) links. 
Such an unmarked graph represents an infinite (Euclidean) kaleidoscope if and 
only if 'weights'  can be assigned to the dots in such a way that the weight 
of each dot is equal to half the sum of the weights of its neighbours [21, p. I78 
(10-34)]. When this happens we naturally take the smallest weight to be 1; 
the dots with weight 1 are said to be special [6, p. 87; 40, p. 507]. There are 
(say) f special dots. The actual cases [9 a, p. 265; 9 b, p. 481] are as follows: 

1 

1 1 2 ?  

/5. ( f  = 4) /~6 ( f  = 3) 

1 J ~ o e l  

.~, ( f = n + l )  

1 2 3 ~ 3 2 1 2 4 6 5 4 3 2 1 

/~v ( f =  2) /~s ( f =  1) 

This simple criterion seems mysterious, almost magic. For  an explanation, 
we recall that the fundamental region for any infinite reflection group is a poly- 
tope whose dihedral angles are of the form zc/qu~, where qu~ (with # #  v) is 
an integer greater than 1 [21, p. 80]. Such a polytope, in Euclidean n-space, 
is either a simplex or a Cartesian product of simplexes [14, p. 599], so we 
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may concentrate our  attention on a Euclidean n-simplex with dihedral angles 
n/quv. Let c~ denote the (n-1)-dimensional  content of the facet that lies in 
the v th mirror, expressed as a multiple of the content of the smallest facet 
(so that c , =  1 for at least one value of v and e , >  1 for all other values). By 
filling the vth facet with orthogonal projections of all the others (as in w 1.3 
on page 386), we see that 

c~ = ~, c u cos rc/ql, ~. 
/t4:v 

Since cos re/2 =0,  the only non-vanishing terms in this sum are those in which 
the/~th dot is a neighbour of the vth. In the ' t r igonal '  cases, since cos ~/3=�89 
we have 

c~= �89 Z c u, (3.32) 

summed over all these neighbours. Thus the contents c~, of the facets of the 
simplex, can be identified with the 'weights'  that played such a magically useful 
role in the criterion for the fundamental region to be a Euclidean simplex. 
We may equally well describe these numbers c~ as the magnitudes of vectors 
with sum zero along outward normals to the mirrors, that is, the magnitudes 
of 'forces in equilibrium' 1-48, p. 92; 21, p. 190, where e~ appears as z~; 40, 
p. 507]. 

After removing one of the f 'special'  facets (of unit content), we are left 
with n mirrors forming a finite kaleidoscope at the opposite vertex of the simplex. 
This is one of the f sharpest corners, and the n reflections generate a 'special'  
subgroup G of the infinite group G. For  the order F of G, Weyl [-21, pp. 205-207] 
discovered the remarkable formula 

r = n !  fl-lc~. (3.33) 

Writing IA.I for the order of A,, and so on, we thus have 

I&l = n  ! (n+ 1)=(n + 1)!, 

ID, l = n ! x  4 x 2 " - 3 = 2 " - l n ! ,  

IE61=6 ! x 3 x 23 x 3 = 7 2  • 6 !, 

IETl=7 ! x 2  x23 x31 x 4 = 8  x 9  !, 

]Es]=8 ! x22 x 3 2 x 4  z x 5 x 6 =1 9 2  x 10!. 

For  the extension of (3.33) to graphs having marked links, see 1-16, p. 413] 
and [6, p. 178]. Two more ways to compute the order F will be found in w 3.5 
and w 3.9. 

3.4. Schliifli Functions 

As we saw in w 2.2 (on page 563), the fundamental region for the symmetry 
group [p, q, r . . . .  ] of a regular polytope {p, q, r . . . .  } in n dimensions is a spherical 
(n-1)-s implex whose bounding hyperplanes have a natural ordering such that 
any two non-consecutive hyperplanes are perpendicular. The dihedral angles 
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e, fl, 7 . . . .  between pairs of consecutive hyperplanes take the values re~p, re~q, 
re~r, ..., but it is sometimes useful to consider such an (n - 1)-dimensional spheri- 
cal orthoscheme for arbitrary values of a, fi, 7 . . . . .  In particular, we may have 

= fl = 7 . . . .  re/2, in which case we speak of an orthant: a quadrant when n = 2, 
an octant when n = 3, and so on. 

Schlfifli [ 4 9 ,  p.  260] defined his function 

f(~, fi, 7 . . . .  ) 

to be the (n-1)-dimensional content of the spherical orthoscheme divided by 
the content of the orthant, so that 

f (1  re, �89 . . . .  , i re)= 1, f(cq fi, 7 . . . .  ) = f ( . - - ,  7, fi, cO, 

f (~) = 2 a/re, f (e, fl) = f  (e) + f (fl) - 1, 

f (e ,  fi, 7,...) + f ( r e -  ~, fi, 7,.-.) = 2f(fl, 7,...). (3.41) 
In particular, 

f(�89 fl, 7 . . . .  ) =/ ( f l ,  7 . . . .  ). 

Less obviously [49, p. 255; 50, pp. 173, 246], 

f(~, fl, 7, 6) =/(r fl, 7) +f(a) f (6)  +f(fi ,  7, 6 ) -  {/(~) +f(fl)  +/(7)  + f  (6)} + 2, 

and if cos 2 a + c o s  2 f i+cos  2 7= 1 [49, pp. 263, 268; 50, pp. 159, 175, 252], 

2f(e,  fl, 7)= { f  (/~)}z _ {1 - / (7 )}  2 - {1 _/(e)}2. 

In particular, since f(re/4) = �89 f(re/3) = ~, f(re/5) = 2 and f (2  re/5) -_4 - - 5 '  

f/re re re\ 1 re re re 

f 5 ' 7 '  5 ]  45' f ~ 7  7 '  =225 '  f 7' 5 ' 57=225"  

2,2  
Also, s ince f  - ~ ,  5 '  5 '  7 '  3 )  = f [ 5 - '  3] 15' 

f(_45, 2 re re]= 191 
5 ' 3 ]  225" 

Two special cases of Schl/ifli's remarkable formula fp'(c0=(t]f~~ 
ira/ 

[-49, p. 267; 50, p. 256] are 

f ( 2 e ,  e, 7 )  = 4f@, 7,  7)  

S i n c e  

and f (e ,  2e, e ) = 6 f ( e , 7 , 7 ) .  

re re\ Jre re 2 re re 2 
f ( - 2 3 , 3 , ~ ) + J ~ 7 , ~ , 7 ) = f ( ~ , 3 ) = ~ ,  it follows that 
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fin n n\ 2 

1 
and since f 3 '  = f  225 

' ? ' 5 '  = ' 

f ( 5  n 3) = 1 
' 3 '  900" 

13 

This last result, in the form F4(7c/5)= 1/900, was used in w 2.2 (on page 565) 
to obtain the order 14400 for [5, 3, 3]. 

More generally, he defined 

Fn(C~)=f e' 3 '  3 . . . .  with n - 2  occurrences of n/3 

and 

4 '  3 . . . .  with n -  3 occurrences of n/3 

[50, pp. 177-179]. Thus 

F2(~ ) =f(~)=27/=, F3(~)--f(~,n/3)--f(7)-- �89 

G2(/~) =f(fl)=Z~/n, G3(f i )= / (~ ,n /4)=f ( f l )  1 2 ,  

F 4 (=/3) = ?5, F4 (~z/4) = ~4, G,, (=/3) = ~ .  

Since, in spherical (n-1)-space,  a regular simplex with dihedral angle 2~ 
can be dissected (by 'simplicial subdivision') into n! orthoschemes f(~, n/3, 
=/3, ...), the content of such a regular simplex is 

n! F, (c~) 

El9, pp. 182-183]. Since the orthant is a regular simplex with dihedral angle 

n/2, F, (=/4)= 1/n! 

[49, p. 267; 50, pp. 177-178, 258], in agreement with the natural convention 

F o (~) = F~ (~) = 1. 

Since a regular spherical cross polytope with dihedral angle 2fl can be dis- 
sected into 2"- 1 ( n -  1) ! orthoschemes 

f (fl, n/4, n/3, n/3, ...), 

the content of such a cross polytope is 

2"- X(n- 1)! G,(fl). 

Since a regular Euclidean simplex has dihedral angle ~ - 2 ~ 9 = a r c  sec n in n 
dimensions, or arc s e c ( n -  1) in n -  1 dimensions [21, p. 295] while a cross poly- 
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tope has dihedral angle 2 arc sec 1/n in n dimensions, or 2 arc sec n]/n- 1 in n -  1 
dimensions, and since an infinitesimal spherical polytope is Euclidean, we deduce 
that, if n > 2, 

F , ( c 0 = 0  when e = � 8 9  
(3.42) 

G n(fi)=0 when f l=a rcsec  n ~ - l .  

Schlfifli derived most of the above results from his amazing discovery [49, 
p. 235; 50, pp. 167, 234] that if Vis the content of any spherical (n-1)-simplex, 

expressed as a function of all its (~)dihedral angles 2, then 

(n--2)dV--Zld2, 

where 1 is the content of the (n-3)-face at which the dihedral angle 2 takes 
place. The case n = 3 agrees with Girard's formula for the area of the spherical 
triangle, if we make the convention that the 'content '  of a single point is 1. 
The case n = 4 was elucidated by H.W. Richmond [18, p. 286]. 

Since the ratio of contents of the (n-1)-sphere  and (n-3)-sphere is 2 hi(n-2) 
[21, p. 126], the ratio of the corresponding orthants is 7c/2(n-2). Accordingly, 
when Vand I are expressed in terms of orthants, the coefficient ( n - 2 )  in Schl/ifli's 
formula has to be changed to (n/2), and thus 

dV=2-Eld2=Zldf(2). 
7C 

As two special cases, we have 

dF.(cO=2 F,_ 2(a) dc~, 
7~ 

where a is given in terms of e by 

sin 
c o s a -  or s e c 2 a = s e c  2 ~ - 2  

]//4 sin 2 a - 1 

[50, p. 256; 19, p. 183], and 

dG,(fl) =2- F,_  2(b) dfi, 
7g 

where b is given in terms of fl by 

c o s b =  sinfl or sec 2 b =  sec2 f l - 2  
1/4 sin 2 f i - 2  

(3.431) 

(3.432) 

[50, p. 259]. In view of (3.42), we thus have, for any q~>�89 arc s ec (n -  1), 

2 
F,(~b)=-- S F,_z(a) dc~ 

7"C 
are s e e ( n -  1) 
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and for any q5 > arc sec n ~ - l ,  

2 '~ 
Gn(q~)=-- ~ Fn-2(b) dfi. 

are seeVn- 1 

To facilitate computation [19, pp. 184, 194] let us introduce new variables 

u=sec  2 e = 2 + s e c  2a, v=sec2fl=2+sec2b 

and new functions 

Then 

and 

Since 

and 

we have 

and 

f,(u) = f,(sec 2e )=  F.(e), 
g,(v) = g.(sec 2/3) = Gn (/3). 

du=d(sec 2 e ) = 2  sec 2e tan 2e d e =  2u ~ / ~ -  1 de, 

dv = d(sec 2 fl) = 2 sec 2/~ tan/~ dfl = 2v ~ dfl. 

Fn-2 (a)= f,_ 2 (sec 2a)=  f ,_z(U-  2) 

Fn-2(b) = f._ 2 (sec 2 b ) =  fn_2(V-- 2), 

Fn_2(a) de=fn_2(u-2) 
du 

2 u / / A  2 - -  1 

(3.44) 

dv 
Fn_ 2(b) dfl=fn_ z(V- 2) 

2v I/v-- 1' 

enabling us to define (for x >  n - 1 )  our new 'Schlfifli functions' f,(x) and g,(x) 
recursively by 

fo (x) = fl (x) = 1, 

f , ( x ) = l  f fn_z(U-2) du (n>2), 
TC n- 1 U]/U 2 -- 1 

gn(X)= -/  ~ fn-2(u--2)  du (n>2) .  

~ n - 1  U U ] ~ I  

(3.45) 

In particular, 
1 { du 1 arc sec 

f2(x) = ~  1 U / U  2 -  1 -- rc 
X, 

(3.46) 

i f d s  2 arc sec ]//-~. g2(x)=~  u L 1 - T c  

Schl/ifli [50, pp. 169, 178-179] observed that, when n is odd, F,(~b) and G,(qS) 
can be expressed in terms of the same functions with smaller values of n, and 
so ultimately with smaller even values. In terms of f~(x) and g,(x), his formulae 
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become 

f 2 m + l ( X )  = ~ ,  ( - - 1 ) ~ a 2 ~ + ,  f2m-2v(X) ,  
v=O 
rn-1  

gz, .+l(x)= ~, (--1)~azv+a gzm_2v(x)+(--l) m a2.,, 
v=O 

(3.47) 

where a. is defined recursively by a o = a~ = 1 and, for n > 2, 

n - 1  

2nan= ~, avan-t-v. 
V=0 

It follows [44, p. 105] that a. is the coefficient of O" in the two Maclaurin series 

s ec  0 = 1 + 1 0 2  -~ ~ 4 0 4  "~-7@0 06 q- 8~674 08 -~- . . . .  

t a n O = O + � 8 9  17 t~7~_ 62 0 9 .  ~ 3 1 5  v ~ 2 8 3 5  u ~ . . .  

[43, pp. 328-329; 1, pp. 387-388]. 
It will be found useful to observe also that, by (3.42) and (3.44), or directly 

from (3.45), 
f .+ l (n)=g.+ l(n)=O; 

therefore, when n is even, 

f .(n)=a3 f.-z(n)-a5 f . -4(n)+ ... Ta. 1 fz(n)+_a.+l, 

g.(n)=a3 g . - 2 ( n ) - a 5  g . -4(n)+ ... g a . - i  gz(n)_+a., 
(3.48) 

and (3.45) may be expressed in John Leech's computationally convenient form 

l f f.-a(U--2) du 
f.(x) = f.(n) + u ~ l  ' 

1 x f . _ 2 ( u _ 2  )du  
g " ( x ) = g " ( n ) + 7 !  u u ~ - - i  

(3.49) 

[19, p. 194]. In particular, (3.48) and (3.46) yield 

f4(4) = 1 f2 ( 4 ) 2  = 1 (_arcsec 4 2), 

1 5 1(2_ 5~ 
g 4 ( 4 ) = 3 g 2 ( 4 ) - ~  - = 3 k 3  8] = 1 "  

3.5. A New Formula for the Order of E. 

In this section we will see that the functions (3.45), which measure the contents 
of regular simplexes and cross-polytopes in spherical (n-1)-space,  can be com- 
bined to yield the content of the fundamental region for the 'sporadic'  group 

E, = [3"-4,z, 1]. 
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When the generating reflections for this group are numbered as on page 10 
we shall find it convenient to let r~ denote the mirror  for R~, so that the funda- 
mental  region is a simplex having dihedral angles re/3 between the pairs of 
facets 

r l  g4~ r2 r3~ r3 r4~ r4 r5~ . . .  ~ r n -  1 rn 

and right angles everywhere else. As in (3.31), we let this family of groups include 
not only E 9 =/~8 but also 

E s = D s ,  E4= A4 ,  E3=A2•  A 1. 

In the last case the graph is no longer connected and the fundamental  region 
is an isosceles spherical triangle DAB with angles ~/3, re/2, re/2 opposite to 
its sides r l = A B ,  re=BD, r3=DA, which are the mirrors for R1, R2, R3, as 
in Fig. 3.5a. 

D 

A 13 
q 

D 

zt 
6 

F 

A ~ B 
3 

Fig. 3.5a. (E3) = F3 (p) + 2G3 (or) 

Analogy with Fig. 6.7A of Regular Polytopes [-21, p. 111] suggests a dissec- 
tion of this spherical triangle into 3 smaller right-angled triangles by cutting 
along the bisector s = A E  of the right angle at A and along the arc t = E F  
perpendicular to AD. Since s serves as a mirror  reflecting ABE into AFE, these 
two triangles have equal angles ~r at E. Let p denote the remaining angle at 
E, that is, p = / D E F .  This dissection shows that the area of triangle DAB is 

(E3) = F 3 (p) + 2 G 3 (tr), 

where p and o- can be evaluated as follows. The congruent triangles ABE and 
AFE yield also AF = AB = re/3. Since AD = re~2, DF = AD - AF  = re/6. Since the 
angle D is ~z/3, the classical formula cos A = cos a sin B (for a right-angled spheri- 
cal triangle ABC) yields 

rc rc 3 rc ~ 1 
cos p = cos g sin 3 - 4 '  cos a = cos ~ sin 4 21 /2 '  (3.51) 

whence, as we see at once from Fig. 3.5 a, 

p + 2 a = re. (3.52) 
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D D 

C C 

A B A B 

Fig. 3.5 b. (E4.) = F4 (p) + 2 G4 (o-) 

In an orthoscheme A B C D ,  with right angles A B C ,  ABD,  ACD,  BCD in 
its four faces, draw CE perpendicular to BD, and E F  perpendicular to AD, 

as in Figure 3.5b. Consider the two skew lines A D  and CE. AD lies in the 
plane ABD,  which is perpendicular to CE (since the dihedral angle along BD 

is a right angle), so CE must lie in a plane perpendicular to AD, namely the 
plane C E F  [36]. Thus A D  is perpendicular to CF. In other words, all the four 
angles at F (in the planes A B D  and ACD)  are right angles. It follows that 
the two planes A C E  and C E F  serve to decompose the orthoscheme A B C D  

into three smaller orthoschemes A B E C ,  A F E C ,  D F E C ,  with a common edge 
EC. 

This decomposition of an orthoscheme belongs to 'absolute '  geometry, and 
thus holds, in particular, for the spherical fundamental region of the reflection 
group E 4 = A  4. Now the dihedral angles along AB,  AD, CD are all ~/3. To 
facilitate extending these ideas from E 4 t o  En, let us name the four mirrors 
in the unusual order 

r a = A B C ,  r 2 = BCD,  r 3 = A C D ,  r 4 = A B D ,  

and call the cutting planes s = A C E ,  t =  CEF.  The equal dihedral angles along 
A B  and A D  provide an isosceles ' trihedral angle' at A, so the two orthoschemes 
A B E C  and A F E C  are (oppositely) congruent by reflection in the plane s = A C E ,  

which now bisects the right dihedral angle along AC.  In fact, s could have 
been defined as the bisector of that dihedral angle, and t as the image of r z 
by reflection in s. Naming faces as well as vertices, we may now say that the 
two planes s and t decompose the orthoscheme 

A B C D  = r 2 r 3 r 4 r 1 

into the three smaller orthoschemes 

A B E C  = r2 sr l  r4, A F E C  = tsr3 r4, D F E C  = tr2 r3 r4. 
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On a sphere with centre C, the lines and planes through C cut out an 
arrangement of points and arcs just like Fig. 3.5a. Thus the dihedral angles 
along the common edge CE of the three small orthoschemes are a, o-, p. Since 
CE is perpendicular to the face ABD of the large orthoscheme, these same 
angles occur at E in that face. Also there is a right angle at B; but the angle arc sec 3 
~70~ ' at A is less than a right angle, and the angle �89 arc s e c ( - 3 ) ~ 5 4 ~  ' 
at D is less than re/3. It follows that the volume of ABEC or AFEC, in terms 
of the orthant as unit, is 

f ( a ,  ~/4, ~/3) = G4 (o-) 

and the volume of DFEC is 

f (p,  re/3, re/3)= F4(p). 

We have thus succeeded in expressing the volume of the fundamental region 
for E 4 in the form 

(E4) = F4 (p) + 2 G4 (0). (3.5 3) 

The extension to n dimensions is now clear. The fundamental region for 
E,  (n<9)  is a spherical (n-1)-s implex bounded by the mirrors ra . . . . .  r, for 
R1, ..., R,  ; r~ is orthogonal to all the other mirrors except r 4. The n -  1 mirrors 
rl . . . .  , r ,_ ~ cut out, on the (n-2)-sphere  centred at their common point, an 
(n-2)-s implex which is the fundamental region for the E,_~ generated by 
R~ . . . .  , R,_  1. This holds also when n = 9, except that then the 8-simplex is not 
spherical but Euclidean. 

The ( n -  1)-dimensional content 

( E , ) = F , ( p ) + 2 G , ( a ) ,  (3.54) 

for each n < 9, can be verified by dissecting the simplex into three orthoschemes 
by means of two suitably placed hyperplanes s and t. The hyperplane s (perpen- 
dicular to r~ for v>4)  bisects the right dihedral angle between rl and r3, and 
reflects r2 into t. Like s, t is perpendicular to rv for every v ~ 4; t is perpendicular 
also to r3, since r2 is perpendicular to rl. Thus the two hyperplanes s and 
t can be used to dissect the original simplex r~ r2... r, into three orthoschemes 

r2sr l /~4r5. . . rn~ t s r 3 r 4 r 5 . . . F n ,  t r2F3r4r5. . .~" n. 

Since the angles that s and t make with rl, r2, r3 are independent of n, the 
contents of these orthoschemes are G,(o-), G,(o-), F,(p). 

By (3.51), cos 2p=-~ and cos 2 a=~ .  Hence, in the notation of (3.44), we 
have, for each n < 9, the simple formula 

(E,) = f,(81 + 2g,(8). (3.55) 

Since the whole (n-1)-sphere  is covered by 2" orthants, it follows that the 
order IE, I of the whole group E, = [3 "-4'  2,1] is 

IE.I = 2"/(E.) (n=<9). (3.56) 
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Since f,(n-- 1)= g,(n-- 1)= 0, IE.I is infinite when n = 9, that is, for E 9 = / ~ 8 .  When 
n is odd, we can use (3.47) to obtain 

rn- -1  

(E2m+l)= ~ (-1)Va2v+l(E2,,_2~)+(-1)"(a2,,+~+2az,,,). (3.57) 
v = O  

By (3.46) and (3.52), 

(E2) = t"2 (8) + 2 g2 (8) = 2p  + 2 2 a  = 2 (p + 2 a) = 2. 
7~ 7"C 7~ 

This suggests that we should regard E 2 a s  the group A1 of order 22/2=2, 
generated by the single reflection R 2 . 

By (3.57) with m = 1, 

(E3)=(E2)--(a3 + 2a2)= 2--(~ +1 )=3,2 

in agreement with the known order 23/~= 12 for E3 =A1 • A 2 -  62 x 63 .  
When n =  4 or 6, the integration in 3.49 needs a computer. This difficult 

task was kindly undertaken by N.J.A. Sloane. Tabulating 

arc sec (u -2)  and arc sec (u -2)  

TO2 b / ~ - b / 2  - -  1 ~ 2 Z / U ] ~ I  

for various values of u from 3.5 to 8.2, he used (3.49) with n = 4 to compute 

f4(x) = f4(4) + ~ 2  i arc see(u-- 2)du 
u[//u 2 -  1 

for various values of x, including 

f4 (8) ~ 0.02268 05970 96406 8, 
and to compute 

8 

g4(8)=g4(4)+l-2 4~ arcsec(u-Z)du~o.05532 63681 18463 3, 

whence, by (3.54), 

(EJ=0.13333 33333 33333 _ 2 

in agreement with the known order 2 4 / 2 = 1 2 0  for E 4 = A 4 ~ - _ 6  5. Then (3.57) 
with m = 2 yields 

1 2 5 2 2 11 1 (Es)=(E4)-- 3(E2) + i~ + yg= i~--~+ ~-6=~o, 
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in agreement with the known order 25 x 60 for E 5 = D 5. He used (3.48) to com- 
pute f6(6) and g6(6), Then his tables for f4(x) enabled him to obtain 

8 

f6 (8) = f6 (6) + 1 ~ f4 ( u -  2) d u ~ 0.00018 73637 62773 664, 
6 U/U 2 -  1 

8 

g6 (8) = g6 (6) + 1 j. f4 (u -- 2) d u ~ 0.00052 36020 69229 426, 
rc 6 u / u - - 1  

whence 

(E6) ~ 0.00123 45679 0123 ~ 1/810.00000 000. 

But we see from the graph that E 6 has a subgroup E 5, whose order is divisible 
by 26; therefore 

exactly, and 

in agreement with page 11. 
By (3.57) with m = 3, 

and 

(E6) = 1/810 

IN6[ =26 x 810= 51840, 

(F,] (F,~ l lE ~+ Z lE ~ t 1 7 + 6 1 ~  
- -  1 2 x 4 17 61 1 

levi = 27 x 22680 = 2903040. 

and 

Finally, s i n c e  ( E 9 ) =  0 ,  

'~" ] 3",J" ] 15k j-' } l ] ~ 8 " ~ = l / l ~ 6 h - -  2 t 'l~4h.a - 17 /~;' h [ 62 ..L. 2 7 7 ~  

1 4 ~ 34  62 277  1 
- -  2 4 3 0  - -  2--2-5 / 3 ~ 5  - - 2 8 3 5 - -  403-2 - -  2 7 2 1 6 0 0 ,  

IEsl=28 • 2721600=696729600. 

3.6. The Groups E6, E6 and the Lattice 222 

The lists of reflection groups in w 3.2 and w 3.3 include the instances 

Op+3=[3P'l ' l ] ,  Ep+g=[3p'2"a], /~6=[-3 2'2'2] and /~7=1-3 3'3'1] 

of the general 'Coxeter group' [3 p'q'r] or, in J.H. Conway's very natural notation, 
u (because its graph is a triquetra having legs of lengths p, q, r). In the 
notation of Regular Polytopes [21, p. 201], a ring round the foot of the first 
leg yields the uniform polytope (or honeycomb) pqr (=  p,q). Removing the other 
two feet in turn, we see that pq~ has facets (or cells) of two types, p(q_ ~)r and 
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Pq(,- 1) ; their centres are the vertices of qrp and rpq, respectively. Thus the three 
polytopes 

Pqr, qrp, rpq 

are related by a kind of triality [23, p. 134], analogous to the duality that 
relates two reciprocal regular polytopes. For instance, when p = q = r = 1, so that 
we are considering the 16-cell f14 = 111, alternate tetrahedral facets lol and 11o 
have as centres the 8 + 8  vertices of two other fl4's. In other words, triality 
relates the three fig'S which can be inscribed in the 24-cell {3, 4, 3} [21, p. 149]. 

We see from w 2.4 (on page 572) that the vertex figure of Pqr is (p-1)qr 

and thus the 'p th  vertex figure' is 0q~= =t~e ,  where n = q + r + l .  Since 
3 

the vertex figure of 0qr is the Cartesian product eq x e~ of two regular simplexes 
(written as ['eo, e~l in [11, p. 3591), we could have defined pqr to be the uniform 
polytope whose ( p + l ) t h  vertex figure is c~qxe~ while its 2-faces are triangles 
[23, pp. 131-1341. This is actually how the symbol pq~ first arose [11, pp. 371- 
3721, three years before the derivation from the reflection group [3P'q'r I was  
thought of. In particular, 

Pqo =~p+q+l,  P12 =tip+3, lql =hyo+3- 

From the list of group orders at the end of w 3.3, we can easily compute 
the number of vertices for each of the remaining polytopes P0r : 

for 221, [E61/IDsI=27; for 122 , IE6[/IA51=72; 
for 322, [ETI/IE6[=56; for 232 , IET[/ID61=126; 
for 132 , [E7]/[A61=576; for 421 , [Es[/IET[=240; 
for 241, [Es]/[Dv[=2160; for 142, [EsI/IA7]=17280. 

We saw, in w 2.6, that the vertices of 0t, 1 = e,_ 1 h form a lattice. More generally 
[-21, p. 205], a lattice arises when we put a ring round any special vertex of 
a graphical symbol, and consequently the vertex figure of such a honeycomb 
is centrally symmetrical. Thus the vertices of the honeycombs 

0~, 1, ha, ,  222 , 331 , 521 

form lattices, and their vertex figures 

e~,, tl fin, 122, 231, 421 

are centrally symmetrical. On the other hand, a honeycomb may have a centrally 

symmetrically vertex figure without forming a lattice; familiar instances are {~} 

and {3, 4, 3, 3} [-21, pp. 64, 158; see also w (p. 580)1. Like {3, 6} and 
{3, 3, 4, 3}, the lattice honeycomb 222 has all its cells congruent, although 
we may appropriately name them 212 and 221 alternately. 
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This honeycomb 222 is obtained by ringing one of the three 'feet' of the 
symmetrical triquetra 

The 7 mirrors of the 6-dimensional kaleidoscope/~6 may conveniently be taken 
to have the equations 

X 1 - - X  2 = 0 ,  X 1 ~-X 2 ~-X 3 "-~X4--X 5 - I - ] /~X  6 = 0 ,  

X 2 - -  X 3 ~ 0 ,  X 4 - -  X 5 ~ 0 ,  

X 3 - -  X 4 --~- O, 

X4q-Xs----0 , 

Xl +X2 +x3 +X~+ X5 --V3X6 =4. (3.61) 

Using 6 of the 7 equations, we see that the 3 special vertices of this 6-dimensional 
simplex are 

(2, 0, 0, 0, 0 , -  2/[/3), (0, 0, 0, 0, 0, - 4/~f3), 

(0, 0, 0, 0, 0, 0). 

Taking the origin to be one vertex of 222, we reflect in the mirror (3.61) 

to obtain another: (1, 1, 1, l, 1, - y 3 ) .  The remaining reflections then yield 
the lattice consisting of all the points 

(x,, x2, x3, ;]/52) 

where x~ and y are six integers, mutually congruent mod 2, with sum congruent 
to 0 mod4. These coordinates for 22z were discovered by John Leech [-39, 
p. 154], using a different procedure. 

Among the points of this lattice, the 72 nearest to the origin are the vertices 
of the vertex figure 12z, namely the 40 permutations of (+2, -+2, 0, 0, 0; 0) 
(keeping x6 fixed) and the 32 points 

(-+1, + l ,  -+1, + l ,  -+_1; +]/3) 

with an odd number of minus signs (including the sign of x6). 
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Fig. 3.6a. The six-dimensional polytope 122 

This 6-dimensional polytope 122 , being the vertex figure of the lattice 222 , 
is centrally symmetrical. Its 36 diameters, joining pairs of opposite vertices, 
are perpendicularly bisected by hyperplanes which are the mirrors for the 36 
reflections belonging to the group E 6 [14, pp. 611-612-1. For  instance, the locus 

of points equidistant from (1, 1, 1, 1, - 1, V~) and ( -  1, - 1, - 1, - 1, 1, - Vr3) 
is the mirror 

X 1 ~ - X  2 "JffX 3 - ~ X 4 - X  5 - ~ ] / ~ X 6 = 0 .  

In Peter McMullen's Fig. 3.6a, the 72 vertices appear in sets of 12 on four 
concentric circles: four, not six, because each of the 24 'white '  points is really 
double (one vertex hidden behind another). 

Again, among the points of the lattice 222, the 27 nearest to (0, 0, 0, 0, 

0, 4/V~ ) are the vertices of a cell 221. They consist of the origin 

(o,o,o,o,o,o), 
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the 10 permutations of (_+2, 0, 0, 0, 0; 2V3), and the 16 points 

(_+ 1, _+1, +1, + 1, _+ 1;V3 ) (3.62) 

with an odd number of  minus signs. 
Of course, we could just as well use an even number of minus signs in 

(3.62), and thus agree with Schoute [51, p. 376] except that he subtracted 4/1/~ 
from x6 so as to put the origin at the centre. 

Among the 27 vertices of this remarkable six-dimensional polytope 221 [33, 
p. 47; 31, p. 660; 15], the 16 given by (3.62) belong to an h7s=121 which is 
the vertex figure (at the origin) of the 221 and is also one of the 27 facets 
of 122 of type 121. The remaining 27 facets h7s of 122 , namely those of type 
112 , can  be derived by applying the central inversion which reverses the signs 
of all the coordinates. 

The facets of 221 are of two kinds: 27 cross polytopes /35=211 such as 

(-t-2, 0, 0, 0, 0; 2V~), and 72 simplexes ~5=22o  such as one joining (1, 1, 1, 

1, 1; ~/3)to the permutations of(2, 0, 0, 0, 0; 2~//3). 
It was observed by Sehoute [51, p. 377], that the 27 vertices of 221 form 

a two-distance set: every two of them belong either to an edge or to a diagonal, 

and every diagonal is V~ times as long as an edge. This observation enabled 
him to recognize that E6, the symmetry group of 22a , the isomorphic to the 
group of automorphisms of the 27 lines on the cubic surface [55; 15; 35, 111- 
119]. The edges and diagonals correspond to the pairs of skew lines and intersect- 
ing lines, respectively. Moreover, the 36 pairs of opposite es's correpond to 
the 36 double-sixes [37, w 25, Fig. 181; 24, p. 118], and the 45 'equatorial' trian- 
gles such as 

(0, 0, 0, 0, 0, 0), (0, 0, 0, 0; ___ 2; 2~/3) 

correspond to the 45 tritangent planes. Completely orthogonal to the plane 
of such a triangle, there is a 4-flat onto which the whole polytope can be ortho- 
gonally projected, in this projection, the triangle is foreshortened into a central 
point while the remaining 24 vertices of the polytope project into the 24 vertices 
of a regular 24-cell {3, 4, 3} [56]. 

The reflection group E 6 has an 'even' subgroup E~-, of order 36 x 6 != 25920, 
generated by rotations. This is the simple group 

U4 (2) ~ 0 6  (2) ~- SU4 (2) ~ $4 (3) ~ O 5 (3) ~ C2 (3) 

[9, p. 26]. 
Since the cubic surface with its 27 real lines is a non-orientable surface 

having Euler-Poincar6 characteristic 2 = - 5  [35, pp. 113-114], it can be 
unfolded into a 14-gon by cutting along 2 - ) ~ = 7  circuits from one point. It 
was observed by Wolf Barth and Horst Kn6rrer [-3, pp. 10 14] that these 7 
circuits (or the 7 generators of the first homology group) correspond to 7 pas- 
sages that can be seen in a model of the cubic surface. They are associated 
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with 7 of the 36 double-sixes, namely 

N 1 2  

N23 

N34 

N123 

N 

N 5 6  

N45 

in the notation of [-35, p. 112]; in other words, they correspond to the 7 dots 
in the triquetra for/~6 (see page 23). 

3.7. The Groups E7, E'7 and the Lattice 3a 

The infinite group/~7 = [ 33'3'1] arises from the 7-dimensional kaleidoscope 

whose 8 mirrors may be constructed in Euclidean 8-space as sections of the 
8 hyperplanes 

Ul = U 2 ,  U2 ~ ~/3, U3 = U4, U 4 = U 5 ,  U5 ~ U 6 ,  /~/6 ~ U7, u7=us +2, 
U 1 ~- U2 "~- U3 "~ b/4 = U5 "~- U6 "~- U7 -[- U 8 (3.71) 

by the hyperplane ~u~--0.  Thus the two special vertices of this 7-dimensional 
simplex are 

� 8 9  and (0,0,0,0,0,0,0,0). 

Reflections in the first six mirrors are simply the transpositions 

(1 2), (2 3), (3 4), (4 5), (5 6), (6 7) 

which generate the symmetric group on the first seven coordinates. The seventh 
mirror, uv = us + 2, reflects the origin into 

(0, 0, 0, 0, 0, 0, 2, -2) .  

The eighth reflection, naturally denoted by 

[1234. 5678], (3.72) 

transforms (0, 0, 0, 2, 0, 0, 0, - 2 )  into ( - 1 ,  - 1 ,  - 1 ,  1, 1, 1, 1, -1) .  In fact, 
the midpoint between these two points lies on the mirror (3.71), while the vector 

(0, 0, 0, 2, 0, 0, 0, - 2 ) - ( - 1 ,  - 1 ,  - 1 ,  1, 1, 1, 1, - 1 ) = ( 1 ,  1, 1, 1, - 1 ,  - 1 ,  - 1 ,  - 1 )  

is perpendicular to the mirror. A 'bifid' reflection [efgh.ijkl], such as (3.72), 
is evidently unchanged by any permutation of the four numbers efgh or ijkl 
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and by bodily interchanging these tetrads. The infinite reflection group/~7 actual- 
ly includes the whole symmetric group ~8, since 

(7 8)=[1237.4568][4567-1238][1237-45681 

[11, p. 388]. It follows that the lattice 331 consists of all the points whose coordi- 
nates are 8 integers, mutually congruent mod2, with sum 0 [11, pp. 390~391, 
403]. 

Among the points of this lattice, the 126 nearest to the origin are the 126 
vertices of the vertex figure 231, namely the 56 permutations of (2, 0, 0, 0, 0, 
0, 0, - 2 )  and the 70 permutations of(l ,  1, 1, 1, - 1 ,  - 1 ,  - 1 ,  -1) .  

Since the vertex figure of 231 is 131 =h76 , whose group is D6, this number 
126 arises as the index of D6=[33'1'1] in E7=[33"2"t]. Similarly, 231 has 
[Ev[/]E6[=56 facets 221 and [EvI/IA61=576 facets 230=66 . Since h76 has 32 
vertices while its facets include 12 121's, each vertex of 231 belongs to 32 edges 
and 12 22 ~'s. Similarly, since the' second vertex figure' of 231 is 031 = t 1 c%, whose 
facets consist of 6 tlc%'s and 6 c%'s, each edge of 231 belongs to 6 221'S and 
6 e6's. 

J.W.P. Hirschfeld [38, p. 120] has discovered, in projective 3-space, a configu- 
ration of 56+576 lines, 126 cubic curves and 2016 cubic surfaces, whose 
automorphism group is E7. In fact, there is a perfect correspondence between 
his configuration and the polytope 231, as follows: 

The polytope 231 Hirschfeld's configuration 

126 vertices such as (2, - 2 ,  0, 0, 0, 
0 ,0 ,0 )  and(I ,  1, 1, 1, - 1 ,  -1, -1,  
-1) ,  each belonging to 32 edges and 
12 facets 221. 

2160 edges, each joining 2 vertices and 
belonging to 6 221's and 6 e6's. 

56 facets 221 (lying in hyperplanes such 
as Ul + U 2 = 2  and ul + u 2 = - 2 ) ,  each 
having 27 vertices while each is adja- 
cent to 27 other 22 x'S and 72 simplexes 
6 6 �9 

576 facets 66 (lying in hyperplanes such 
as u1=2, Ul= - 2 ,  u l - u z - u 3 - u 4 = 4  
and u2+u3+u4-u l=4) ,  each having 
21 edges while each is adjacent to 7 
facets 221. 

126 twisted cubics such as t 2 and t1234 , 
each lying on 32 cubic surfaces and 
each having 12 Latin secants. 

2160 cubic surfaces, each containing 2 
cubic curves and a double six: 6 Latin 
lines and 6 Greek lines. 

56 Latin lines, such as A12 and B12 , 
each being a secant to 27 cubic curves 
while each intersects 27 other Latin 
lines and 72 Greek lines. 

576 Greek lines (such as F1, A 1, F134 
and A2134), each lying on 21 cubic sur- 
faces while each intersects 7 Latin 
lines. 

The finite subgroup E 7 of/~7 is generated by the 7 reflections 

(1 2), (2 3), (3 4), (4 5), (5 6), (6 7), 

[1234. 5678]. 
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Their mirrors form a spherical 6-simplex in which the vertex opposite to the 
first mirror is given by 

Ul J/= U2 = U3 = . . . U T ,  Hlq-U2JrU3q-U4=U5q-H6q-U7-~Us=O. 

Thus a typical vertex of the 7-dimensional polytope 321 is ( -3 ,  1, 1, 1, 1, 1, 
1, -3) ,  and the whole set of 56 vertices consists of the 28+28 permutations 
of 

(--3,--3,1,1,1,1,1,1) and ( 3 , 3 , - 1 , - 1 , - 1 , - 1 , - 1 , - 1 )  

[10; 11, p. 387], which are conveniently denoted by 

c12 and C~z. 

In fact, Chi is the Ph, i of J.J. Seidel [-2, pp. 303-304]. 
Altogether, the 8 x 9 ! elements of the group E 7 include 63 reflections (inter- 

changing the 63 pairs of opposite vertices of 231, and the 63 pairs of opposite 

fl6's of 321 [14, p. 612])" the (~) = 28 transpositions such as (1 2), and the �89 ( :)  = 35 

bifid substitutions. We easily verify that [efgh.ijkI] reflects Gs into Cgh, cij 
into C~t, while leaving Cei and C~i invariant. It is interesting to compare this 
with the P~Igh =Pijkl of [45, p. 364]. 

We see from w (on page 573)that the (~) vertices of tl e7 are given 

by the permutations of two coordinates 6 followed by six coordinates -2 .  These 
can be halved to yield (3, 3, - 1 ,  - 1 ,  - 1 ,  - 1 ,  - 1 ,  - I )  or C12; thus the 
56 vertices of 321 belong to two concentric t 1 c~7's. Another way to exploit the 
central symmetry of 321 is to observe that, since the vertex figure 221 has 27 
vertices, the 56 can be distributed as 1 + 27 + 27 + 1 : two opposite vertices, say 

Cva=( -1 ,  -1 ,  - 1 ,  - 1 ,  - 1 ,  - 1 ;  3, 3) and C7s=(1,1,1, i, 1 , 1 ; - 3 , - 3 ) ,  

and the vertices of two 22 l's lying in parallel 6-flats 

Ulq-U2q-...u6=-T2 , u7 q-U8 = -/-2 

between them. The 22~ in the former 6-flat (with the upper signs) has the 12+ 15 
vertices 

( 3 , - 1 , - 1 , - 1 , - 1 , - 1 ; 3 , - 1 )  and ( - 3 , - 3 , 1 , 1 , 1 , 1 ; 1 , 1 )  

(with the first six coordinates permuted, and likewise the last two), i.e., 

Ci7, Ci8 (1<i<6)  and c~j ( l < i < j < 6 ) .  (3.73) 

These perfectly agree with Schl/ifli's symbols for the 27 lines on the cubic surface 
if we identify Ci7 with his ai and Cis with his bi [11, p. 388 (9.42)]. 

Like the 4 diameters of the cube in ordinary space, the 28 diameters of 
321 (joining pairs of opposite vertices c~j, C 0 are a set of equiangular lines 

[41, pp. 344-346]" all the (228)pairs of diameters are congruent. Moreover, the 
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two supplementary angles formed by 
in the case of the cube. This observation 
of 321 may belong to cubes. In fact, 105 

any pair are arc sec(_+3), the same as 
suggests that certain tetrads of diameters 
3-flats such as 

U l ~ U 2 ,  U3 ~ b / 4 ~  b/5 ~ U6, 

contain cubes, and so also do 210 such as 

b/7 ~ U 8 

Ul  --~- b/3 ~--- U2 ~- U4, b/5 ~ U6 z U7 z b/8 : 

a total of 315 cubes whose vertices and edges all belong to 321. 
When the 28 diameters of 321 are represented by the 28 bitangents of a 

non-singular quartic curve in a projective plane [10; 45, pp. 351-362], the 63 
Steiner sets represent the 63 pairs of opposite facets 311 =f16, the 288 Aronhold 
sets represent the 288 pairs of opposite facets 32o=0%, and the 315 conics (each 
containing the 8 points of contact of 4 bitangents) represent the 315 cubes. 
The vertex figure of such a cube is one of the 45 "equatorial triangles" of 
221 (the vertex figure of 321 ) which are represented by the 45 tritangent planes 
of the cubic surface. As each of the 27 lines belongs to 5 tritangent planes, 
and 12 •  each of the 756 edges of 321 belongs to 5 of the 315 
cubes. 

By applying to such a cube any element of period 7 in ET, we obtain a 
set of 7 cubes whose 7 x 8 vertices are precisely all the 56 vertices of 321. This 
arrangement corresponds to a set of 7 conics whose 7 x 8 intersections with 
the quartic curve are the points of contact of the 28 bitangents [24]. Patrick 
Du Val [13, p. 186; 41, p. 344] proved that such a set of 7 cubes can be derived 
from 

(_+i, +1,0,  + 1,0,0,0) (3.74) 

by cyclic permutation of the Cartesian coordinates Xo, Xl, ..., x6. We recall 
[-21, p. 244] that the 2 n vertices of the regular cross polytope ft, can be orthogon- 
ally projected into the vertices of a regular polygon {2n) is a suitable plane, 
which we may identify with the field of complex numbers. Thus, when n =  7, 
the point (Xo, x l ,  ..., x6) appears as the complex number 

6 
Xv ev, where ~ e  2 ~ i / 7  , 

v=O 

the 14 vertices of f17 are given by ___eu, and the 56 vertices of 321 are given 
by 

+~u+eu+l _+e ~+3 (/~ = 0, 1 . . . . .  6) 

with one cube for each value of #. Fig. 3.7a shows these 56 points and the 
edges of one of the seven cubes. The remaining six cubes can be found by 
rotating the figure through multiples of the angle 

0 = 2 re/7. 

These rotations permute the residues/~ (mod 7) which appear in the abbreviated 
symbols 013 for 1 + e + e  3, 233 for e 2 - e  3 - e  5, and so on. 
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0 
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0 

3z.g 

O 
56t 
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gO2 o 
o g61 
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I _ o / ~0 /  / v . _  o_ / ~oj~ / ~  ~0~ 

~ ~ o  ~0 
~ 3  o ~] 

0 
0 0 

~35 

O 

~ .  o 
0 

Fig. 3.7a. The 56 vertices of 3zl and one of the 315 inscribed cubes 

Remarkably, the 56 points in this figure lie in sets of 8 on 7 lines through 
the centre 0. To see this, we observe that 235, 450, 124 are collinear with 0 
and 013, since 

2cosO. ( l+aq-e3 )=(~  q-a-t)( lq-~q-~3)= s 

2 cos 20.(1 + e q-e3)=(e 2 +e-2)(1 + e + e 3 ) =  - -e4+e  s -- 1 =450, 

2 cos 30-(1 "q- e"{- cS3) = (E 3 + e - - 3 ) ( 1  -~ e-I- e3)  = - - e - - e  2 +e4 = i24. 

Moreover, each of these sets of 8 collinear points comes from the vertices of 
a cube, as we see from Fig. 3.7b, where the vertices have been artificially sepa- 
rated for clarity. 

0~3 ]35 - -  

124 - - -  o = _ ~ _  - - -  _ _ _  
235 013 

Fig. 3.7 b. Another cube, foreshortened 
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Thusthe 56 pointsin Fig. 3.7aformfour concentric {14}%: 

124 561 235 602 346 013 450 I24 561 235 602 346 013 450, 

233 602 346 013 450 124 561 235 602 346 013 450 124 561, 

013 450 124 561 235 602 346 013 450 124 561 235 602 346, 

450 124 561 235 602 346 013 450 124 561 235 602 346 013. 

After drawing the first regular 14-gon, we can locate the vertices of the 
remaining three as the points of intersection of certain pairs of diagonals. Each 
of these diagonals contains a set of four collinear points, arising from a foreshort- 
ened square. To be precise, 235 is at the intersection of diagonals 561 346 
and 602 7~30; 013, of 561 602 and 346 450 (or of 602 1~7~ and 37~6 361); 
430, of 602 346 and i24 361. With this information it would be easy to 
draw the whole 14-gonal projection of 321. 

To find coordinates for the 126 vertices of the related polytope 231, we 
can identify the centres of the 126 facets 311=fl6 of 321 with the midpoints 
of the 'first' diagonals, of length 4. Since the vectors obtained by adding 
(1, 1,0, 1, 0, 0, 0) to 

( 1 , - - 1 , 0 , -  1,0, 0,0), ( - - 1 , 1 , 0 , -  1, O, O, 0), ( - 1 , -  1,0, 1,0,0,0), 

( 0 , -  1, 1,0, 1,0,0), (0,0, 1 , -  1, 0, 1, 0), (0, 0, 0 , -  1, 1,0, 1), 

( -  1, 0, 0, 0, 1, 1, 0), ( 0 , -  1,0,0,0, 1, 1), ( -  1, 0, 1, 0, 0, 0, 1) 

in turn, are 

(2,0,0,0,0,0,0), (0,2,0,0,0,0,0), 

(1,0,1,1,1,0,0), (1,1,1,0,0,1,0), 

(0,1,0,1,1,1,0), (i,0,0,1,0, i, 1), 

the 14 + 112 vertices of 231 can be derived from 

(0,0,0,2,0,0,0), 
(1,1,0,0,1,0,1), 

(0,1,1,1,0,0,1), 

(+2,0,0,0,0,0,0) and (+_1,+__1,+_1,0,0,+_1,0) (3.75) 

by cyclic permutations of the 7 coordinates. 
It follows that the vertices of the lattice 331 are all the points whose seven 

coordinates are even, along with the cyclic permutations of 

(1, 1, 1, 0, 0, 1, 0) (mod 2) (3.76) 
i 

[47, pp. 148-149 ('Example 8')]. The vertices (3.75) of 231 are just the 126 lattice 
points at distance 2 from the origin. Similarly, the 576 lattice points at distance 

~/7 consist of the 128 points 

(• +__i, • __+i, __+i, • __+I) 

and the 448 cyclic permutations of 

(__1, _+l, -t-2, __ 1,0,0,0), 

(__1, • • _+2,0), 

(__1, +1,0, __+1, __2,0,0), 

(+__1, __+1,0, __+1,0,0, __+2). 
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These 576 can be identified with the centres of the facets 32o=C% of 321 , such 
as the simplex 

(1,1,o,l,o,o,o) (o,1,1,o,_+1,o,o) (o,o, 1,1,o,_+1,o) 0,O,l,O,O,O,+J) 

with centre 3(1, 1, 2, 1, 0, 0, 0). In other words, the 576 points named above 
are the vertices of the polytope 132. 

Like the 'extended' icosahedral group [3, 5 ] ~ g I  5 x ~2 (see w on page 
561), E7 includes the central inversion whereas its 'even' subgroup E~- does 
not; therefore 

ET=E 7 x ~2, 

where E4- is the simple group of order 4 x 9 !=  1451520, namely 

Sp6 (2)_~ S 6 (2) ~ GO7 (2) ~ SO7 (2)-~ 07 (2) 

[9, p. 46]. 

Fig. 3.7c. The 18-gonal projection of 321 
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Fig. 3.7c is Peter McMullen's drawing, in which the 56 vertices of 321 appear 
as three concentric {18}s with one pair of opposite vertices coinciding in the 
centre. This is even more symmetrical than the 14-gonal projection that arose 
from the compound of seven cubes. 

3.8. The Groups E8,/~8 = E9 and Lattice 521 

The infinite group/~8 = E9 = [ 35'2'1] arises from the kaleidoscope 

whose 9 mirrors may be constructed in Euclidean 9-space as sections of the 
9 hyperplanes 

Ul ~U2 ,  U2~U3,  U3 z/ /4~ //4 z / / 5  ~ U5 ~U6 ,  U6 ~//7~ U7~U8~ u8 = u 9 + 3 ,  

2(Ul + U2 + //3)=U4 + Us + //6 + //7 + U8 + U 9 (3.81) 

by the hyperplane ~ u ~ = 0 .  Thus, in the notation of page 17, r 1 is (3.81), r2 
is u1=//2,  r 3 is u2=u3,  ..., r s is uv=u8,  and r 9 is U8=//9+3 [-28, p. 29]. More- 
over, the hyperplane s, bisecting the right angle between r 1 and r3, is 3(u2-u3)  
+2(u l  +u2 + u 3 ) - ( u 4  +us  + ... u9) = 0  or 

2ul + 5 / / 2 - - ( / / 3 + U 4 +  ... + / / 9 ) = 0 ;  

and t, perpendicular to r 3 through the intersection of r 2 and s, is 6(u1-u2)  
+2u1 + 5 u 2 - ( u 3  + ... +/ /9 )=0  or 

8//1 --(/22 + / /3  + "'" +/ /9)  = 0 .  

These hyperplanes s and t are perpendicular to r~ for all v > 3, while t is perpen- 
dicular also to r 3 ; thus they decompose the 8-simplex r 1 r2... r 9 into three ortho- 
schemes 

F2SF1Y4""/'9, I~SF3 r4...r9~ tr2 r3 r4...r9~ 

the first two of which are congruent. We observe that s makes equal angles 
r~/4 with r 3 and 1"9, and equal angles rr with t and r2, where 

cos o - = ( 1 6 - 5  +7)/6 x 6 ] / } = ( - 2 +  5)/61/~ = 1/2~f2. 

Also, in the last orthoscheme, the angle p between t and r2 is given by 

cos p =(8 + 1)/6 V~ x ~/2= 3/4, 

in agreement with (3.51). Thus the decomposition which led us to (3.55) remains 
valid when n--9, and all the cases with n < 9 could have been deduced from 
this Euclidean case. 
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In the 8-simplex r I r 2.. .r9, the vertex opposite to r 9 is given by solving 
all the ten equations except u s = u 9 + 3 ;  thus it is the origin, whose image by 
reflection in r 9 is 

(0 ,0 ,0 ,0 ,0 ,0 ,0 ,3 ,  --3). 

Since the mirror r 1 or (3.81) reflects (0, 0, 3, 0, 0, 0, 0, 0, - 3) into 

( - 2 ,  - 2 ,  1, 1, 1, 1, 1, 1, - 2 ) ,  

we conclude that the lattice 521 consists of all the points whose coordinates 
are 9 integers, mutually congruent mod 3, with sum zero [-11, p. 402]. 

Similarly, omitting Ul = u2 and doubling, we obtain the typical vertex 

( - 2 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , - 5 )  

of the related honeycomb 2sl. Its vertices are a subset of the lattice, namely 
those points for which 4 or 8 of the 9 coordinates are odd (as 1 and - 5  are 
in the above instance). 

As we know, the complex number a + b i is derived from two real numbers, 
a and b, by means of the multiplication rule 

(a + b i)(c + d i ) = a c - d b  + (da + bc) i. 

The complex conjugate of x = a + b i is 2 = a -  b i. 
The quarternion a + bj is derived from two complex numbers, a and b, by 

the rule 
(a + bj)(c + d j ) = a c - d b  + (da + bO) j. 

The quarternation conjugate of x = a + bj is 2 = c i -  bj. 
The octave (or Cayley number) a + b e  is derived from two quarternions, 

a and b, by the rule 

(a + be)(c + d e ) = a c - ~ b  + (da + bS) e (3.82) 

[27, p. 158; 19, pp. 27-29]. Writing 

a=ao +a x  i + a z j + a 3 k  and b = b o + b l  i + b 2 j + b 3 k ,  

where a~ and b~ are real numbers and k = i j, we have 

a + b e = a o + a l  i + a z j + a 3  k+bo e + b l  i e + b 2 j e + b 3  ke, 

where e, ie, je, ke, like i, j, k, are square roots of - 1 .  
Such combinations of 8 real numbers were discovered in 1843 by J.T. Graves, 

who proposed (in a letter of 1844 to Hamilton) the name octaves. However, 
they are often called Cayley numbers because, in 1847, Cayley noticed that for 
some triads a bc, the associative property a b.c = a . b c  must be replaced by the 
anti-associative property ab-c=  - -a .bc  [4, p. 106; 8, p. 30I]. Dickson's seven 
symbols 

i, j, k, e, ie, je, ke 
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can be applied to the 7 points of Fano's finite projective plane PG(2, 2) as 
in Fig. 3.8a, so that the 7 lines (one drawn as a circle) determine associative 
triads a b c, such as ij k, whose pairs anti-commute: 

b c = a = - c b ,  c a = b = - a c ,  a b = c = - b a .  

The associative law is easily seen to hold also for any triad with a repeated 
element: aZb=a.ab ,  a b . a = a . b a ,  a b . b = a b  2. The 7 'complements '  of the lines 
in the finite geometry are quadrangles abcd, such as e ie je  ke, which (when 
arranged in a suitable order) satisfy 

b c . d = a =  - b . c d ,  c . d a = b =  - c d . a ,  

d a . b = c =  - d . a b ,  a . b c = d =  - a b . c .  

In other words, the 28 triangles that occur in the 7 quadrangles determine 
the 28 anti-associative triads [19, p. 23]. For  instance, 

(ie.je) ke=(]i) ke = ( - k )  k e =  e, 

ie(je, ke) = ie(kj) = i e ( -  i) = lie-= - e. 

ie 

j e  i ke 

Fig. 3.8a. A finite plane with seven points and 
seven lines 

j ~e k 

Fig. 3.gb. The same seven points differently 
named 

Fig. 3.8b shows a different way to apply the same 7 symbols to the points 
of PG(2, 2). Now the 7 points, 7 lines (along with + 1) and 7 quadrangles 
represent, in an equally perspicuous manner, the 16 + 16 + 16 octaves 

+ l, +i, +j, +k, +e, +_ie, +_je, +ke,  

(+ l+ie+_je+ke) /2 ,  (+_e+_i+j+_k)/2 

and 192 others derived from the last two expressions by cyclically permuting 
the 7 symbols in the peculiar order 

e, i, j, ie, ke, k, je. 
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These 16+224 octaves have the remarkable property of being closed under 
multiplication. For instance, 

(1 + i e + j e +  ke)(1 + k e + e + k ) =  {1 + ( i + j + k )  e} {(1 + k) + (1 +k) e} 

=(1 + k ) -  (1 - k ) ( i + j + k ) +  {(1 +k)-t-( i+j+k)(1 -k)} e 

= 2 ( - i + e + j e + k e ) .  

Accordingly, they are said to be the 240 units in a maximal domain of integral 
octaves. The whole integral domain (based on these units) consists of the octaves 

(Xo + Xl e + x2 i + x3j  + x4 ie + x5 ke + x6 k + xv je)/2, 

where the eight x's are ordinary integers, all even or all odd, or four of each, 
with a restriction in the last case: their residues mod 2 may only be 

(1;0,0,0,1,1,0,1) or (0;1,1,1,0,0,1,0) 

or the same with the last seven cyclically permuted. 
Interpreting (Xo, xl, ..., x j  as a point in Euclidean 8-space, we recognize 

this domain of integral octaves as one of Patrick Du Val's coordinatizations 
for the lattice 521 [13, pp. 185-186]. Its section by the hyperplane Xo=0 is 
the lattice 331 ; see (3.76). 

It seems somewhat paradoxical [-5, p. 128] that the cyclic permutation 

(e i j ie ke k je), 

which preserves the integral domain (and the finite projective plane labelled 
as in Fig. 3.8b), is not an automorphism of the whole ring of octaves: it trans- 
forms the associative triad i j k  into the anti-associative triad j ie je. On the 
other hand, the permutation 

(e ie j e  i k ke j), 

which is an automorphism of the whole ring of octaves (and of the finite plane 
labelled as in Fig. 3.8a) transforms this particular integral domain into another 
one of R.H. Bruck's cyclic of seven such domains [19, p. 27]. 

The 240 units of the integral domain represent the 240 lattice points at 
distance 2 from the origin: the 16 permutations of 

(___2,0,0,0,0,0,0,0) 

and the 112 + 112 cyclic permutations of (the last 7 coordinates in) 

(_+ 1;0,0,0, _1,  _+1,0, +__1), (0; _+l, +1, • 1,0,0, +1,0). (3.83) 

These 240 points are the vertices of the 8-dimensional uniform polytope 421, 
which has also 6720 edges, 60480 triangular faces, 241920 tetrahedra, 483840 
four-dimensional simplexes, the same number of five-dimensional simplexes 4oo, 
138240 + 69120 six-dimensional simplexes 41 o and 4o 1, and, for its facets, 17280 
seven-dimensional simplexes 42o along with 2160 cross polytopes 411 [11, 
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p. 414]. Fig. 3.8c is Peter McMullen's skilful drawing of its most symmetrical 
planar projection, in which the 240 vertices are distributed into 8 concentric 
triacontagons {30}. This drawing could have been derived from the frontispiece 
of Regular Complex Polytopes by inserting 240 extra lines [22, p. 134]. 

Fig. 3.8e. The eight-dimensional polytope 421 

Returning to the lattice 521 , w e  may consider the points at distance 2V~ 
from the origin [19, p. 35] and thus obtain, for the 112+256+ 1792 vertices 
of 241, 

(+_2, _+2,0,0,0,0,0,0), (_+1, _+1, _+1, _+1, _+1, _+1, _+l, _+l) 

and (3.83) with each 0, in turn, replaced by _+2. The supporting hyperplane 
x o =2  contains one of the 240 facets 231, with the coordinates (3.75). 
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The same lattice 521 includes 17520 points at distance 4 from the origin, 
namely: the 16 + 1120 + 2048 permutations of 

(•  0, 0,0, 0, 0, 0), (+_2, _+2, _+2, •  0,0,0), 

(+3, +1, +1, +1, +1, +1, +1, +1), 

the 7168 cyclic permutations of (3.83) with three O's replaced by +2, and the 
7168 cyclic permutations of (3.83) with one 0 replaced by +2  and one +1 
replaced by + 3. These 17520 points include the 240 vertices of a dilated 421 
(with all the coordinates doubled). When these 240 have been removed [11, 
p. 397-398; 19, pp. 35-36], the remaining 17280 are the vertices of 142. 

M.S. Longuet-Higgins [42, pp. 450-466] has discovered, in inversive 3-space, 
a configuration of 17280 points and 2160 spheres, with 8 spheres through each 
point and 64 points on each sphere; its automorphism group is [34'2'1]. In 
fact, the points and spheres correspond to the vertices and facets 141=h77 
of the polytope 142 , in which each vertex belongs to 8 such facets while each 
hTv has 64 vertices. He exhibits this configuration as one member of a large 
family. For any two positive integers q and r, with (q - 1 )  (r - 1 )  < 3, inversive 
(q + 1)-space admits a configuration of points and q-spheres corresponding to 
the vertices and facets l(q_ 1), of the (q + r+  2)-dimensional polytope 1~, (= 1,q) 
which can be defined simply as the polytope whose second vertex figure is 
the Cartesian product cq x e, of two regular simplexes. There are q + r + 2 q- 
spheres through each point, arising from the q + r + 2 facets 0(q_ 1), of the vertex 
figure 0q,=t~ eq+,+l. The points on each q-sphere correspond to the vertices 
of the facet l(q-1),. The case when q = l  was already mentioned on page7, 
where we considered the planar configuration of 2 ,+2 points and 2 ,+2 circles 
corresponding to the vertices and facets ~,+ 2 of the (r + 3)-dimensional hemi-cube 
11,=h7,+3. 

Du Val, whose eight-dimensional coordinates for the lattice 521 are related 
to the octaves, discovered also ten-dimensional coordinates for the same lattice 

[13, pp. 186-1873. In fact, the vertices of a 521 of edge 5 @  are all the points 
in Euclidean 10-space whose coordinates satisfy the equations 

XI -~- X2"~- X3-~- X4-~ X5 = X6-~- X7 -~ X8 ~- X9 -~ XIo =O 

and the congruences 

xl=x2=-x3=x4=-xs~2x6~2xT=-2Xs=-2x9=-2Xlo (mod 5). 

In this lattice, the points at distance 5 ~/2 from the origin are, of course, the 
240 vertices of a 421. In the accompanying table, we allow simultaneous permuta- 
tions of the first five and last five coordinates. On the left we display the x's, 
and on the right, new coordinates 

uv_{(x~+~x~+5)/~5 (v= 1, 2, 3, 4, 5), 

- (zxv-5--x~)/]/5 @=6,7,8,9, 10), 

where r = �89 + 1). 
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D u  Val's coordinates  N e w  coordinates  

(5, o, o, o , - 5 ;  o, o, o, o, o ) ( ~  , o , o, o , - ~ ; ~ 1 / / ,  o , o, o , - r  
( 4 , - - 1 , - - 1 , - - 1 , - - 1 ;  2, 2, 2 , - - 3 , - - 3 )  ( 2~ , 1 , 1 , _ z 2  , _ ~ 2  ; 2 , - - ~  , - - ~ ,  T -1,  1: -1) 
( 4 , - - 1 , - - 1 , - - 1 , - - 1 ; - - 3 , - - 3 ,  2, 2, 2) ( _ ~ - 2 , _ z 2  , 1, 1 , 1 ; ~3 , v - 1 , _ r , _ ~  , - -z)  
(3, 3 , - - 2 , - - 2 , - - 2 ;  4 , - - 1 , - - 1 , - - 1 , - - 1 )  ( ~3 ~ - 1 , _ ~ , _ ~  , - - z  ; T - 2 ,  ~2 , - - 1 , - - 1  , - - 1 )  
(3, 3 , - - 2 , - - 2 , - - 2 ; - - 1 , - - 1 , - - 1 , - - 1 ,  4) ( v - l ,  z - a , _ z , _ v  2 ; ~2 , ~2 , - - 1 , - - 1  , - - 2 r )  
(2, 2, 2 , - - 3 , - - 3 ;  1, 1, 1, 1 , - -4)  ( �9 , ~ , ~ , - - z - x i - - ~  3 ; 1 , 1 , 1 , - -T  z , _ ~ - 2 )  
(2, 2, 2 , - - 3 , - - 3 ; - - 4 ,  1, 1, 1, 1) ( - -2  , ~ , z , - - z  - 1 , - ~ - a  ; 2~1,_ i , i , - - ~ 2  , _~2) 
(1, 1, 1, 1 , - -4 ;  3, 3 , - - 2 , - - 2 , - - 2 )  ( v2 , v2 , - - 1 , - - 1  , - - 2 z  ; - - v  , - - z  -z ,  r,  r , --2) 
(1, 1, 1, 1 , - 4 ; - - 2 , - 2 , - - 2 ,  3, 3) ( - 1  - 1  , - 1 ,  T 2 , 12 - 2  ; T , "c , " g , - - ' c  - 1 ,  --'c~ 3)  

(o, o, o, o, o; 5, o, o, o , - 5 )  ( ~ ,  o , o, o - ~ V ~ ; - ~  o , o, o , ~ )  

0 0 0 

0 0 

0 o 0 0 
o 0 

0 0 
0 0 0 0 o 0 

0 0 �9 �9 �9 o o 

0 0 0 �9 �9 �9 �9 �9 �9 0 0 0 

o �9 �9 �9 �9 �9 �9 0 
�9 �9 �9 4 

0 o o o 0 
0 0 �9 �9 �9 O ~ o o o o �9 �9 �9 �9 0 0 

�9 �9 o 
0 �9 o q l l~  0 ~ 0 qll o o �9 �9 �9 0 

o 4 �9 0 
0 �9 �9 o �9 �9 o �9 �9 0 

�9 O �9 �9 
0 O 0 

o 0 �9 �9 �9 �9 �9 0 0 o �9 �9 o 

0 �9 �9 o �9 o ~ �9 0 
o �9 �9 0 

o �9 o �9 o lip 0 
�9 o 0 ~  �9 

o �9 

o o o 0 

0 o �9 �9 �9 o o o o o �9 �9 �9 0 0 

0 �9 �9 �9 �9 �9 �9 0 

0 o o �9 �9 �9 �9 �9 �9 0 o 0 

0 o �9 �9 �9 0 0 

0 0 
0 0 0 0 

o 0 

0 o 
0 0 0 0 

0 0 

0 0 
0 

Fig. 3.8d. The 120 + 120 vertices of  the polytope  422 

By picking out alternate rows of  the right-hand column of the table, we 
distinguish two sets of 120 vertices of  421 : one set satisfying 

u~+  ... + u 2 =  10, u 2 +  ... + U 2 o =  10T 2 

and the other satisfying 

u ~ +  . . .  + ~ = 1 o ~  2, u ~ +  . . .  + U ~ o = l O .  
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Let us call these 'odd'  and 'even' vertices, respectively. In Fig. 3.8 d they appear 
as black and white dots. (Compare Fig. 13.6A of [21, p. 249].) When we project 
onto the 5-space u6 . . . . .  ul0 --0 by ignoring the last five coordinates, we obtain 
the 120+ 120 vertices of two homothetic 600-cells {3, 3, 5}: one having the 
coordinates displayed in w 2.5 (on page 578) while the other has these same 
coordinates multiplied by "c. The dilatation that relates them is plainly visible 
in the figure. 

Barry Monson [46] approaches this derivation (of two {3, 3, 5}'s from 420 
by a different route. He observes that, in E8, the four half-turns 

R I R s ,  RcR6, R3 RT, R2 R8 

generate a subgroup isomorphic to [5, 3, 3]; for instance, RI R5. R4 R6 (being 
a product of the four generators of the subgroup 

which is [3, 3, 3 ] ~ 5 )  has period 5. His conclusion is that 720 of the 6720 
edges of 4zl, and 600 of the 241920 tetrahedra, project into the 720 edges 
and 600 facets of the larger ('even') 600-ce11, while another set of 720 edges 
and 600 tetrahedra project into the edges and facets of the starry grand 600-cell 
{3, 3, z 5} [22, p. 46] which has the same 120 vertices as the smaller ('odd') 
{3, 3, 5}. This remark agrees with the visible fact that the 'hole' in the middle 
of Fig. 3.8 c resembles the hole in the middle of Figure 4.7 C of Regular Complex 
Polytopes [22, p. 44] but is quite different from the hole in the middle of Figure 
4.7A [22, p. 42]. The 600 tetrahedra in 421 which project into the facets of 
the larger {3, 3, 5}, may be regarded as the. facets of an 8-dimensional skew 
600-cell whose 120 vertices are all the 'even' vertices of 421. This skew 600-cell 
inscribed in 421 is somewhat analogous to the 6-dimensional 'skew icosahedron' 
inscribed in h76 (or 131 ) [19, p. 144, Fig. 25]. The subject of regular skew poly- 
topes is undergoing further investigation by Peter McMullen and Egon Schulte. 

3.9. The Exponents 

This final section fulfils the promise, made at the end of w 3.3, to describe yet 
another method for computing the order of a finite reflection group. It makes 
use of the characteristic equation for the product of the n generating reflections, 
which can be multiplied in any order, since any two such products are conjugate 
[6, p. 117]. This so-called 'Coxeter transformation', being an isometry, is the 
product of rotations in [�89 completely orthogonal planes along with an extra 
reflection if n is odd [21, pp. 221, 226, 234]. If R 1 R2. . .R,  has period h, the 
rotations in the various planes are through angles which are multiples of 2zc/h, 
say 

~=2m~/h (v= 1, 2, ..., [�89 
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Since the characteristic roots are e -+~vi, along with e ~ i = - 1  if n is odd, the 
characteristic equation is 

f i  ()--eZm~i/h)=o, 
v = l  

where 
l=ml=<m2=< ... <=m,=h-1  and m,+ l _ ~ = h - m  ~ 

so that, if n is odd, m�89 1)=�89 In other words, the n characteristic roots are 

(e2~i/h) ~"~ (V = 1, 2 . . . . .  n). 

The exponents m~ [6, pp. 118-210; 26, p. 212] have interesting properties, as 
we shall see later. 

Instead of the characteristic equation of degree n in 2, we shall use a more 
convenient equation of degree [kn] in 

x = 2 + 2  -1 = 2  COS ~ .  

Most of the particular cases are neatly expressible in terms of the Chebyshev 
polynomials 

- t"/21 ( -  1)~ n - v  ._~ 
T.(X)=" ~ ~ZT_v ( v )(2X) , 

2 v=O 

U,(X)= ~ ( - 1 )  ~ n v (2X),_zL 
v = O  

which are relevant because 

sin (n + 1) 0 
r .  (cos O) = cos n O, U. (cos O) - 

sin 0 

Earlier treatments [21, pp. 220-234; 17, pp. 768-771; 32] used X = c o s 0 ,  
where 0 = k ~v, instead of x = 2 cos 2 0. To make the adaptation, we can substitute 

~ /~+2  for 2X. 
Since 

u~_ l (�89 x) sin 2kO _ UEk_ I (X) 

sin 20 2X 

and 

the equation 

Ok (1 x) -t- O k - -  1 (1 X) = {sin (2 k + 2) 0 + sin 2 k 0}/sin 2 0 

= sin(2k + 1) 0/sin 0 = U2k(X), 

U, (X)=0 for A, or [3 "-1]  

v�89 1~(lx)=0 

u�89 (kx)+ u�89 (�89 

becomes 

when n is odd, 

when n is even. 
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the equat ion  

Since Tk(�89 Tek(X) and 

Uk(�89 Uk-1 (�89 {sin(2k + 2) 0--sin 2kO}/sin 20 
= cos(2 k + 1) 0/cos 0 = Tzk + I (X ) /X ,  

T. (X) = 0 for B. or [3"- z, 4] becomes 

T�89 (�89 x) = 0 when n is even, 

U�89 1)(�89 x ) -  U~(._ 3)(�89 ) = 0 when n is odd. 

Since 

Tk(�89 + Tk_ 1 (�89 = COS 2kO+cos(2k-2) O=2XT2k_I(X), 

the equation X T , _ I ( X ) = 0  for D, or [3 n-3'1'1] becomes 

T~(,_ 1) (�89 x) = 0 when n is odd, 

T~(�89189189 when n is even. 

Combining these results with 'Table 1' of [17, p. 770] where Y = ] / x + 2 ,  
we can tabulate the equations with n < 9 as follows. 

Group Equation for 2 cos 2mvTr h ms, m2, ..., m, 
h 

~p =[p]  x - 2  cos 2 ~ = 0  p 1, p - 1  
P 

A3 =[3,  3] x = 0  4 1, 2, 3 
B 3 =[4,  3] x - - l = 0  6 1, 3, 5 
H 3 =[5,  3] x - - z = 0  10 1, 5, 9 
A4=[33]  x 2 + x - - l = 0  5 1 ,2 ,3 ,4  
D4 =[31'1'1 ] x2+x--2=O 6 1, 3, 3, 5 
B4=[4 ,32]  x 2 - - 2 = 0  8 1 ,3 ,5 ,7  
F 4 = [3 ,4 ,3 ]  xZ- -3=0  12 1,5,7,11 
H4 = [5, 3, 3] x Z - - z - l x - - z 2 = 0  30 1, 11, 19, 29 
A s =[34 ] x 2 - - 1 = 0  6 1 ,2 ,3 ,4 ,5  
D5 =[32'1'1] x 2 - - 2 = 0  8 1 ,3 ,4 ,5 ,7  
B 5 =[4,33 ] x 2 - - x - - l = 0  10 1 ,3 ,5 ,7 ,9  
A6=[35  ] x3+x2-2x - l=O 7 1 ,2 ,3 ,4 ,5 ,6  
D 6 =[33'1'1 ] x3+xZ--3x--2=0 10 1, 3, 5, 5, 7, 9 
B6=[4 ,34 ]  x 3 - - 3 x = 0  12 1 ,3 ,5 ,7 ,9 ,11 
E 6 =[32'z'1] x3+xZ--3x--3=O 12 1, 4, 5, 7, 8, 11 
A 7 = [ 3  6] x 3 - - 2 x = 0  8 1 ,2 ,3 ,4 ,5 ,6 ,7  
Dv=[34'1'1] x 3 - - 3 x = 0  12 1 ,3 ,5 ,6 ,7 ,9 ,11  
B7=[4 ,35]  x3--xZ--2x+l=O 14 1 ,3 ,5 ,7 ,9 ,11 ,13  
E 7 = [ 3  3'2'1] x 3 - - 3 x - - l = 0  18 1 ,5 ,7 ,9 ,11,13,17 
As - [ 3  7 ] x4+x3--3x2--2x+l=O 9 1 ,2 ,3 ,4 ,5 ,6 ,7 ,8  
D 8 =[35'1'2 ] x4+x3--4x2--3x+2=O 14 1, 3, 5, 7, 7, 9, 11, 13 
B 8 =[4,  36 ] x4--4xZ+2=O 16 1, 3, 5, 7, 9, 11, 13, 15 
E8 =[34'2'2] x4+x3--4x2--4x+ 1--0 30 1, 7, 11, 13, 17, 19, 23, 29 
A 9 =[3  8] x 4 - - 3 x 2 + l = 0  10 1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9  
D9=[36'1'1 ] x'~--4x2 + 2 = 0  16 1 ,3 ,5 ,7 ,8 ,9 ,11 ,13 ,15  
B 9 = [4 ,3  v] x4--x3--3x2+2x+l=O 18 1 ,3 ,5 ,7 ,9 ,11 ,13 ,15 ,17  
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Among the exponents m, for D,, we notice that the rhythm of the sequence 
of odd numbers is broken by the number �89 When n is odd, it comes 
between n--2 and n. When n is even, it is repeated (since the polynomial 
XT._ 1 (X) is then divisible by XZ). 

Comparing the equations for F4, H4, E6 and Eg, we notice that 

and 
x 3 ~- X 2 - -  3 x -  3 = (x  2 - 3 ) ( x  + 1) 

x4 + x 3 - 4 x 2 - 4 x  + 1 =(X2- - 'C-  I x--'C2)(X2 Av'CX-- TJ 2), 

confirming the possibility of projecting 221 into {3, 4, 3} plus a repeated point, 
and projecting 421 into {3, 3, 5} plus {3, 3,-~}. 

In 321 and 421, as drawn in Fig. 3.7b and Fig. 3.8c, the symmetry operation 
R 1 R 2 . . . R  n appears as a rotation of period h (=  18 or 30, respectively). For  
the analogous view of 22~, see [15, p. 463]. 

As we saw in [21, pp. 225 226], the groups that contain the central inversion 

(R1 R2. . .R,)  ~h are those for which h is even while every m~ is odd and, if n 
is odd, �89 is odd too, namely 

[p] (p even), B,, D,(neven), H3, H4, F4, E7 and Eg. 

In the last case, the central quotient group of the 'even' subgroup E~- is the 
simple group of order 48 x 10 ! = 174182400, namely 

E~/~2 = O f  (2) 
[9, p. 85]. 

Let us say that an isometry is of type v if it is expressible as the product 
of v (but no fewer) reflections. Such an isometry leaves invariant an (n-v)-flat: 
the intersection of the v mirrors. Thus the identity is of type 0, a reflection 
is of type 1, and an isometry of type n fixes only one point. In any one of 
the irreducible reflection groups, let by denote the number of isometrics of type 
v. Thus b0= 1, bl is the total number of reflections occurring in the group, 
and 

bo+bl + ... +b,=F, 

the order of the group. According to a remarkable theorem of Shephard and 
Todd [52, pp. 279-283, 296-301; 53] the generating function for these numbers 
by is the product of n linear factors: 

bo+bl t+b2 t 2 +  . . .  +b, t"=(1 + m  x t)(1 + m  2 t). . .(I  +m,  t). 

Thus the number of reflections is 

bl =ml  + m 2 +  ... +m.=lnh  

[6, p. 118; 17, p. 780; 21, p. 231; 22, p. 150] and the order of the group is 

F =(ma + 1)(m2 + 1)... (m. + 1). 
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