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2.1. Introduction 

During the years that have elapsed since the appearance of Part I in this 
Zeitschrift 46, 380-407 (1940), some changes have taken place in notation and 
nomenclature. Accordingly it seems desirable to begin Part II by summarizing 
and amending Part I, which deals with polytopes and honeycombs in Eu- 
clidean 3-space, that is, with polyhedra and with space-filling collections of 
polyhedra (such as the cubic lattice 64={4, 3, 4}, regarded as a space-filling 
collection of congruent solid cubes 73 = {4, 3} such that every edge belongs to 4 
of them). 

Since we are not here concerned with 'star polytopes' or 'complex po- 
lytopes', we can follow Grtinbaum [20, p. 31] by defining a polytope to be the 
convex hull of a finite set of points in Euclidean space. Those points of the set 
which cannot be removed without changing the hull are called vertices. The 
number of dimensions is variously denoted by d (by Grtinbaum and his 
disciples) or l (as in our w 1.2). By now using the letter n, we are following 
Schl~ifli [26, p. 189] who, however, called a polytope a 'polyscheme'. (When n 
=0, 1, 2 or 3, an n-polytope is a point, line-segment, polygon or polyhedron.) 
For  each k with 0_< k < n there are a number of k-polytopes belonging to the n- 
polytope; these are called the N k k-faces. In particular, the 0-faces are the 
vertices, the 1-faces are the edges, and the (n-1)-faces are the facets (or, in 
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older literature, the cells). By declaring that there is one ' ( -1) - face '  (the empty 
set) and one 'n-face' (the whole polytope), so that N_ I = N , =  1, we can express 
the famous Euler-Schl~ifli formula l,ll, p. 165] as 

(--1)kNk=0. 
k = - - i  

Among the various criteria for a regular polytope [20, p. 412], one of the 
simplest is the existence of a point (the centre) from which all the k-faces are at 
the same distance k R, for 0=< k <n. For  instance, a polygon is regular if it has a 
circumcircle and an incircle which are concentric. By allowing the circum- 
radius o R to become infinite, we may regard an n-dimensional honeycomb (that 
is, a space-filling collection of n-polytopes) as a degenerate (n+l)-polytope 
whose 'facets' are the cells of the honeycomb. Then, of course, a regular 
honeycomb is one whose cells are regular and congruent; Nk= Go and kR= 0% 
for O<_k<_n. 

It follows from these definitions that the symmetry group of a regular 
polytope or honeycomb is transitive on its 'flags' [-19, p. 63]. 

The definitions in w 1.1 and w 1.9 (p. 380, 400) can be extended recursively to 
any number of dimensions. A polytope or honeycomb is said to be uniform if it 
has the following two properties: 

(i) each facet is a uniform polytope, 
(it) the symmetry groups is transitive on the vertices. 

In w the cosines of the six dihedral angles of a Euclidean tetrahedron 
were shown to be related by the determinantal Eq. (1.35). The ~elegant proof'  
was attributed to Thorold Gosset, but was in fact given much earlier by 
George Salmon [25, p. 48]. 

In w 1.2, we began to see that, in n dimensions, any finite group generated 
by reflections (or briefly, 'reflection group') can be generated by reflections 
R1,  . . . ,  R n in n hyperplanes ('mirrors') forming an angular region (angle, tri- 
hedron, etc.) such that the dihedral angle between the /~th and vth mirrors is 
~/q~v, where q,~ is a suitable integer greater than 1 (often equal to 2 or 3, and 
seldom greater than 5) [11, pp. 75-86, 187-196]. Moreover, the natural con- 
vention q , , =  1 enables us to present the group by the abstract definition 

(U u Uv) q~" --= 1 (]/, v = 1, ..., n). (2.11) 

Similarly, any infinite discrete reflection group can be generated by re- 
flections in m mirrors (n<m<=2n) forming either a simplex or a 'pr ism" the 
Cartesian product (or 'rectangular product') of m - n  simplexes. In the latter 
case the group is a direct product. 

Any reflection group G has an 'even' subgroup G § of index 2, generated 
by rotations which are products of pairs of generators of G. The elements of 
this rotation group are those elements of G whose expressions as 'words'  
R~R a... are products of even numbers of R's. For  instance, [q] being the 
dihedral group ~q of order 2q, [q]+ is the cyclic group 62q. This superscript + 
replaces the prime (') which was unhappily used in w 1,4, In the revised no- 
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ration, the 3-dimensional point groups 
277; 17, pp. 39, 135]) are: 

[,q] + ~ ~q, order q, 
[,q] ~ ~q, order 2q, 

l-q, 2] + ~ ~ ,  order 2q, 
11q+,2]~qx~31,  order2q,  

[,2q+,2+] ~(g2q, order 2q, 

112q,2+] ~ ~32~, order 4q, 

[q,2]_~3q x ~a,  order 4q, 
[3, 3] + ~-_ 9.I4, order 12, 
['3+,4]~9-I4 x ~2, order 24, 

[-3, 3] ~ ~4, order 24, 
113, 4] + ~ ~4, order 24, 

[ ' 3 , 4 ] - ~ 4 x  ~2, order 48, 
[3, 5] + ~ 9.Is, order 60, 

[-3,5]~9.I5• order 120, 

(finite groups of isometrics 119, pp. 274- 

the cyclic rotation group; 
the dihedral reflection group; 
the dihedral rotation group; 
cyclic with equatorial reflection; 
generated by a rotatory inversion; 

the group of the antiprism stq2~; 
t j 

the group of the prism {q} x { } ; 
the tetrahedral (rotation) group; 
the pyritohedral group (w 1.6); 
the group of the tetrahedron {3, 3} ; 
the octahedral group; 
the group of the octahedron and cube; 
the icosahedral group; 
the group of the icosahedron and do- 
decahedron. 

Although both the groups ~1 and ~2 are isomorphic to E2, we have used 
both symbols in this list to distinguish between the 'equatorial '  reflection that 
belongs to [q,2] and the 'central inversion' that belongs to [3+,4] and [3,4] 
and [-3, 5]. (It is a happy coincidence that | is Schoenflies's symbol for the 
group I-2 +, 2 +] generated by the central inversion.) 

We saw in w that all the uniform polyhedra can be obtained by 
Wythoffs construction. This means that the set of vertices of each polyhedron 
is the orbit of a suitable point under the action of either a reflection group or a 
rotation group. (For an alternative treatment, see [,12, pp. 16-18].) However, 
this happy state of affairs cannot be assumed to continue in higher spaces, 
although the number of known exceptions is remarkably small. Among the 
two-dimensional honeycombs, the only one unattainable by Wythoffs con- 
struction is the 'anomalous'  tessellation 33. 4 ~, whose symmetry group is cm in 
the Hermann-Mauguin notation E17, pp. 44 I. 

Near the end of w 1.5 (on p. 395), the graphical symbol for the octahedron 
{3, 4} accidentally lacks its central dot. 

Among the uniform polyhedra, reflection groups suffice in every case except {4} 
the antiprisms s , the snub cube s 3 ' and the snub dodecahedron s �9 

e-co o %<>---o 

The first of these exceptions has the peculiarity that, although Wythoff's 
construction uses the rotation group [q,2]+, the resulting antiprism has some 
planes of symmetry: its symmetry group [2q,2 § is neither a reflection group 
nor a rotation group, but a group generated by one reflection and one half- 
turn. 
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As we saw at the end of w 1.1, the snub cube and the snub dodecahedron 
are chiral. However, their vertex figures are pentagons, each having four 
congruent sides and thus having bilateral symmetry. An amusing consequence 
of this symmetry was noticed by Pieter Huybers [16]. The 24 vertices of the 

snub cube s t~  ~ have for coordinates the cyclic permutations of (x2,x, 1)with 
t . - - J  

an even (or odd) number of minus signs, and the cyclic permutations of 
(x, x 2, 1) with an odd (or even) number of minus signs, where x is the real root, 
about 0.54368903, of the cubic equation 

X3 + X2 + X--1 =0 

[-23, p. 176]. (The choice between 'even' and 'odd'  distinguishes the dextro and 
Iaevo varieties of this chiral polyhedron.) 

In w 1.9 we saw how Angelo Andreini's fourteen uniform honeycombs (in 
three dimensions) can be obtained by Wythoffs construction, although there 
are several anomalous honeycombs (analogous to the tessellation 33. 42 ) which 
cannot be so obtained [5a, p. 184]. The empty space in the fourth column on 
p. 402 should have been used to define the symbol 

h({oo}x{6,3}) or h({6,3}x{oo}), 

analogous to h{6,3}={3,6} [11, p. 155]. In the third column on p. 403, the 
'graphical symbols' for h364 (No. 19) and h2,364 (No. 23) were accidentally 
interchanged: the central dot should carry a ring in the case of h2,3 34, but not 
in the case of h 3 34. 

For the infinite groups A, D, , more convenient symbols are 

[3t3~], [3t4~], [4, 31, 1]. 

The Appendix (beginning on p. 404) deals with 'Cayley group-pictures', 
which are now known as Cayley diagrams (or 'Cayley graphs'). The table on p. 
407 indicates that the groups 

i ]  1] E] + = [3 [41] +, [(4, 3) +, 4] 

+ 

[4,3,4] + , =[4,31' +, 

have presentations (or 'abstract definitions') yielding Cayley graphs which 
consist of the vertices and edges of the honeycombs 

to, t.264, tl,~g4, h~64, to, i,364. 

In the second presentation for [4,3,4] + (yielding to,1,36 r again), E 3 was 
accidentally printed as E 2. 

Concluding this Introduction, I would like to express my gratitude to Patrick Du Val, A.C. 
Hurley, N.W. Johnson and Joachim Neubtiser for some helpful ideas and references. 
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2.2. The Four-Dimensional Reflection Groups 

A finite n-dimensional reflection group is naturally regarded as operating on 
the unit (n-1)-sphere whose centre is the common point of the mirrors for the 
n generating reflections R 1 .. . .  , R n. The mirrors intersect the (n-1)-sphere in n 
'great (n-2)-spheres '  forming a spherical simplex which has a dihedral angle 
~/q~ between the /~th and vth facets [11, pp. 79-81, 188-190]. The graph for 
this fundamental region has n vertices or dots, representing the n facets of the 
simplex (or the n generators of the group), and two of the dots are joined by 
an edge or link whenever q,~ > 2 so that the corresponding facets form an acute 
angle (and the two generators R ,  and R~ are non-commutative). The link is 
unmarked when q,~=3 (the most prevalent value) but carries the mark q~ 
whenever q,~>3. In particular, the #th and vth dots are joined by an un- 
marked link if RuR~Ru=R~RuR~,, but are not (directly) joined if RuR v 
=R~ R~. 

If no dot belongs to more than two links, the fundamental region is the 
special kind of simplex called an orthoscheme [26, p. 2431. In this case the 
facets (i.e., the mirrors) occur in a natural order such that any two which are 
not consecutive are perpendicular; that is, any two non-consecutive generators 
are commutative. Such a group is denoted by 

[q12,q23,q3r . . . .  1, o r  s i m p l y  [ p , q , r  . . . .  1. 

tn the 4-dimensional case it is found that atI but one of the finite reflection 
groups are of this kind, namely 

p" q r "-=[p,q,r] (=[r,q,p]) 

for suitable values of the integers p, q, r (>  2), with the presentation 

- R 2 - R 3 - R~ = (R1 R3)  2 = (R 1 R4) 2 = (R x R4) 2 

=(R1 Rz)P =(R2 R3)q =(R3 R,) ~= 1, (2.21) 

generalizing (1.45). It is to be understood that the mark (p or q or r) is omitted 
from the graph if its value is 3, and that the whole link is omitted if the value 
is 2. For  instance, each 3-dimensional reflection group ~o, ql (=  [q,P]), where 
p-~ +q-~  > !  yields a direct product 2, 

[P, ql • ~ ~ = [P, q, 21 = [q, P, 21 = [2, p, q] = [2, q, p] 

when we add an isolated dot to the graph for [p, q]. In this case the order of 
the group is twice that of [P,q], and the fundamental region is a spherical 
tetrahedron in which the faces at one particular vertex form the trihedral 
fundamental region for [p, q] while the fourth face is perpendicular to all those 
three. 

In another direct product 

[p, 2, r I = [p] x [r] _-__ ~p x ~ ,  
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-- -- -- indicates a spherical tetrahedron having dihedral angles the graph -- p r 
~/p and rc/r along two opposite edges while the remaining four dihedral angles 
are r~/2. 

In 4 dimensions there remain just five 'irreducible' groups 

[3, 3, 3], [4, 3, 3], [3, 4, 3], [5, 3, 3] 

[11, pp. 196, 297] or, in the notation of Cartan and Bourbaki [2, pp. 293-194], 

A4, D4, B~, F4, H 4. 

Their orders 

120, 192, 384, 1152, 14400 

may be computed in various ways, as we shall soon see. The uncomfortably 
tall symbol for the second group is conveniently abbreviated to 

[31,1,1]. 

Its fundamental region is a spherical pyramid based on an equilateral triangle. 
The dihedral angles along the edges of this base (represented by the three links 
in the Y-shaped graph) are all g/3, while the angles along the 'oblique' edges 
are right angles. In other words, this triangular pyramid a b c d is right-angled 
along the edges a d, b d, c d through its apex d, while the angles along the edges 
b c, c a, a b of its equilateral base (see Fig. 2.2a) are n/3: greater than these angles 
would be for the analogous pyramid in Euclidean space. 

a /, 

Fig. 2.2a. The Base of the Fundamental Region for [31' 1,1] 

If we split the pyramid into two halves by a 'vertical' plane joining the 
apex d to a median ce of the base, one half, aedc, having right angles along its 
edges ad, de, ec is an orthoscheme. Since the dihedral angles along its remain- 
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ing edges dc, ca, ae are ~/4, re/3, re/3, this orthoscheme is the fundamental 
region for [4, 3, 3]. If f is the centre of the base abc, the triangle aef, being 
one sixth of abc, is one third of the face aec of the orthoscheme aedc. Hence 
vertical planes joining d to the remaining medians of abc will decompose the 
pyramid abcd into six replicas of the tetrahedron aefd which (having right 
angles along its edges af, fe, ed and angles zc/3, ~z/4, re/3 along fd, da, ae) is 
another orthoscheme, namely the fundamental region for [3, 4, 3]. Since three 
such orthoschemes will fit together to fill up aedc, the group [3, 4, 3] contains 
[4, 3, 3] as a subgroup of index 3. Also we have seen that [4, 3, 3] contains 
[31,1, a] as a subgroup of index 2. 

Since [p, q, r] has the presentation (2.21), we can find its order by enumerating 
the cosets of the known subgroup [p, q] generated by R1, Rz, Ra [17, pp. 12, 123]. 
A more amusing procedure is to obtain the order of [p, 3, 3] as 2fez/V, where V 
is the volume of the fundamental region. In terms of the Schliifli function 

c~ 

where sec 2y--sec 2 x - 2  and sec 2~c=3, the volume of such a spherical ortho- 
scheme is 

rc 2 1 p 

[8, pp. 182-184]. We thus find the order of the group [p, 3, 3] to be 

16/F4 (p).  (2.23) 

It is remarkable that the exact value of this Schl~ifli function is known for 
eleven values of c~: 

e=~c, ~z/5, ~/4, re/3, 2~/5, ~/2, 3~/5, 2~/3, 3~/4, 4~/5, ~ - ~ ;  

F4(e)=0, 1/900, 1/24, 2/15, 191/900, 1/3, 409/900, 8/15, 5/8, 599/900, 2/3. 

From the fourth, third and second we see that the order of [p, 3, 3] is 

120 for p=3 ,  384 for p=4 ,  14400 for p = 5 ;  

consequently the orders of [31'1'1] and [3, 4, 3] are 384/2=192 and 384 x 3 
=1152. 

A third method [11, pp. 221, 232] expresses the order of [p, q, r] (with 
p, q, r all greater than 2) in the form 

6 4 h / (  12-p-2q-r+4-+4-1,p r/ (2.24) 

where h (the period of R 1 R 2 R 3 R4) is given by the quadratic equation 

q 
X 2 - -  COS 2 -~-COS 2 -{-COS 2 X - I - C O S 2 - - C O S 2 - - ~ _ ~ . 0 ,  

p r 
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whose greater root is cos 2 (n/h). This result incidentally provides an algebraic 
criterion for the finiteness of [p, q, r] (with p, q, r > 2): 

4 4 
p + 2 q + r  . . . .  <12 (2.25) 

P q 

[10, pp. 8-10, 24-25]. 
When p=r, the orthoscheme P~ P2P3P4 is symmetrical by a half-turn T 

about the join of the midpoints of two edges: the longest edge P1 P4 and the 
opposite edge P2P3. Adjoining to the reflection group [p, q, p] this half-turn 
(which transforms each R~ into Rs_,), we obtain a 'mixed' group liP, q, p]], 
generated by R~, T, and R 3. Apart from tt~e trivial case when p=2, the finite 
groups of this kind are 

[[p, 2, p]], [[3, 3, 3]], [[3, 4, 3]] 

of order 8p 2, 240, 2,304, analogous to the infinite group [[4, 3, 4]] which was 
described in w 1.4. For  [[p, q, p]], the presentation 

R 2 = T  2 = R~ =(R~ T) 4 = (TR3)2q = (R~ R3) 2 = (R  1TR 3 T)P= 1 (2.26) 

[8, p. 91, (4.7) with T for R2] shows that this is the complete symmetry group 
of the regular skew polyhedron {4, 2qlp}. When q = 2, the skew polyhedron is a 
geometric realization of the regular map {4, 4}p,0 [17, pp. 104, 109], so 

liP, 2, p]] ~ [4, 4]e ' o (of order 8p2). (2.27) 

When p = 3  (and q = 2  or 3 or 4), we can use, for [[3, q, 3]], the two 
generators A =  R 1 and B =  R 1 TR3, with the presentation 

A 2 = (AB) 2q = (AB-1 AB)2 = (AB- 2 AB3)2 = 1 (2.28) 

[15, pp. 327, 331]. In fact, these relations imply 

R I = A  , R2=B2AB -z, R 3 = B - 1 A B 2 A B - 2 A B ,  R4 =BA B -1, 

T = B z AB-  2 AB. (2.29) 

When q = 2, (2.28) provides an aIternative presentation for [[3, 2, 3]] ~ [4, 4]3 , o. 
In the case of [3, 4, 3], the generators R1, R 2, R a, R ,  are reflections in the 

face-planes ecd, aid, abd, abc of the orthoscheme aefd (see Fig. 2.2 A). Since 
the mirror aid reflects abd into acd, the reflection in acd is R a transformed by 
R2, that is, R 2 R 3 R 2. Thus [3, 4, 3] has a subgroup [4, 3, 3] (with fundamental 
region aedc) generated by the four reflections 

R 1, R z R 3 R 2, R~, e 3. 

Other subgroups of [3,4, 3] and [[3,4, 3]] are described elsewhere [-15, 
pp. 314-328]. (Unhappily, in the title for w the order of [[3,4, 3]] was 
printed as 1,152 instead of 2,304.) 
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As we saw on page 564, there are five finite irreducible reflection groups 

[ 3 , 3 , 3 ] = A 4 ,  [3~'~,~]=D4, [4 ,3 ,31=B4,  [3 ,4 ,3 ]=F4 ,  [ 5 , 3 , 3 ] = H 4 .  

It is interesting to observe that there are also five infinite groups 

[3151]=A4, [31'1'1'1"1--/}4, [4, 3, 31'11= /~4, [ 4 , 3 , 3 , 4 ] = C 4 ,  [3, 4, 3, 3] =/~4, 

whose fundamental regions are Euclidean 4-simplexes [2, p. 199; 7, p. 412]. The 
four mirrors at any vertex P of such a simplex generate a finite subgroup 
whose symbol is derived by omitting one of the five dots (and any incident 
links). P is called a special vertex [11, pp. 191, 2051 if this subgroup is 
maximal; then we call it a special subgroup. Thus the special subgroups of 4 4, 
154, /~4, C4, /74 are A4, D 4, B 4, B 4 again and F 4. The simplex has f special 
vertices where f is 5 for -44 (as all 5 are special), 4 for 154, 2 for /~4 and C4, 
and 1 for/74 (indicated by the 'last' dot). The fundamental region for  /54 or  /~4 
is decomposed into 2 or 3 pieces by 1 or 2 hyperplanes through a special 
vertex. These are the same hyperplanes that decompose the fundamental re- 
gions for D 4 = [31' 1, i] and B 4 = [4, 3, 3] in the manner already described. Since 
both/34 and C4 have B 4 at either of their 2 special vertices, while/54 has D 4 at 
any of its 4 special vertices, and since the spherical orthoscheme aedc for B 4 is 
one half of the pyramid abcd for D4, the simplex for C4 is one half of the 
simplex for/34, and this in turn is one half of the simplex for/54. Finally, since 
the orthoscheme aefd for F 4 is one third of the orthoscheme aedc for B4, the 
orthoscheme for/74 is one third of the orthoscheme for/34. It follows that/54 is 
a subgroup of index 2 in/~4 while/~4 is of index 2 in C4 and of index 3 in/74. 
Since/74 = [3, 4, 3, 31 satisfies the relations 

R f = (R  1 R2) a = (R  e R3) 4 =(R  3 R4) 3 = (R  4 Rs) 3 = 1 

while all other pairs of the five R~ commute, we can verify the index of/~4 in 
/74 by counting the cosets of the subgroup/34 generated by 

R1, R2R3 Re, R4, R3' 
R 5 �9 

(Notice that the product R 1 �9 R 2 R 3 R e = (R 2 R1) 2 R 3 R 2 = R 2 R 1 �9 R e R 3 �9 R 1 R e 
has the same period as R 2 R 3.) 

2.3. Some Subgroups of Small Index 

Each reflection group [p,q,r] has its rotation subgroup [p,q,r  1§ of index 2, 
generated by R 1 R 2, R 2 R 3, R 3 R 4 [10, pp. 25-26]. In particular, 

[p, q, 21 + ~ [p, q], (2.31) 
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but now the generators R1, R2, 8 3 of  [p ,q ] ,  instead Of being reflections in 
planes of 3-space, are half-turns about the same planes embedded in 4-space. 
The remaining finite cases are 

[p, 2, r] +, [3, 3, 31 +, [4, 3, 3] +, [3, 4, 3] 4, [5, 3, 3] +, 

of order 2pr, 60, 192, 576, 7200. When p and r are relatively prime, 
[p, 2, r] + ~ ~p~. 

Also [31,1, 21 has its rotation subgroup [31,1,1] +, of order 96. 
In the case of [[3,q, 3]], generated by R1,T, R3 as in (2.26), the rotation 

subgroup [[3, q, 3]] +, generated by R1R4=(R1T)  2, T and R1R3, is more 
simply generated by 

B = R  1TR 3 and C = R  1R 3T, 

in terms of which (R1T)2=BC, T=BZC2B, R1R3=CB2C2B and the pre- 
sentation is 

(BC) 2 = (B 3 C2) 2 = (B 2 C3) 2 = (B-1 C)q = 1 (2.23) 

[15, p. 326 (11.2)1. 
There is no such elegant presentation for the remaining rotation groups 

[[p, q, p]] +; but another subgroup of index 2 in liP, q, p]] is 

[[p, q, p] +], 

generated by R =  R 1 T and S=TR3,  with the presentation 

which shows that 

R 4 = S 2q = (RS) 2 = (RS- 1)p = 1, (2.33) 

lip, q, p3 +1 = (4, 2q ] 2, p). (2.34) 

This is the rotation group of the regular skew polyhedron {4, 2qlp} [8, p. 92; 
17, p. 109]. The finite cases are 

[[p, 2,p]+], [[3,3,3]4],  [[3,4,3]+],  

of order 4p 2, 120, 1152. For the last of these, see also Warner [30, p. 386]. The 
infinite group [[-4, 3, 4] 4] _-__(4, 612, 4) was mentioned in w 1.4. 

When q is odd, the group [p, q,r] + is generated by the two rotations R 1 R 2 
and R 3 R 4, without the help of R 2 R 3. For then R 2 R 3 is a power of 

(R2 R3) 2 =(R 1 R2) -1 g 3 R 4 �9 R 1 R2(R3 R4) -1. 

On the other hand, when q is even, [p, q, 1"] + has a subgroup of index 2, say 

[p+, q,r+], 

generated by Q = R 1 R 2 and S = R 3 R4, with the presentation 
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Qp = S' = (Q- ~ S-1 Qg)q/2 = 1 (2.35) 

[28, p. 76]. The finite cases are 

[p+,2, r + ] ~ g p x g r  and [3+,4,3+], 

of order pr and 288 [15, p. 314]. 
When p=r,  we can adjoin T, as in (2.26), to obtain [[p+, q, p+]] (q even), 

generated by Q and T: 
Qp = T 2 = {(Q-1 W)2(qT)z}q/2. (2.36) 

In particular, 

[p+, q,r] 
[(p, q)+, r] 
[p, q +, r] 

The finite cases are: 

[[p+, 2, p+]] ~-p[4] 2, 

of order 2p z [17, p. 77], which is ~v x ~p when p is odd. 
Three other subgroups of index 2 in [p, q, r] are: 

(q even), generated by R 1 R 2, R 3, R 4, 

(r even), generated by R 1 R2,  R 2 R3,  R4,  

(p and r even), generated by R 1, R a R 3, R~. 

[2+, 4, 3]_~ [4, 3], [3+,4, 2] ~ [4, 3+, 2] ~ [3+ ,4 ]  x [1], 

[p+,2, r]~-[p] + x [r], [3+,4,31 (of order 576), 

[(p, 2)+,r] (of order 2pr), [(p, q)+, 2] = [p, q] + x [1], 
[p, 2 +, r] (of order 2pr), [(3, 3) +, 4] (of order 192). 

(2.37) 

shows that 

in terms of which 

R 4 = U p, 

The presentation 

U = R 1 R 2 R 4, V = R,  R 3 R 4, 

R 1 =V' ,  Rz = V  r Up+ 1, R3 = V r +  1 U p. 

U 2p ~.~V 2r = ( U V )  2 = ( U V -  1)2 = 1 

[p, 2, r] ~ (2p, 2r] 2, 2) (p and r odd). (2.38) 

(Coxeter and Moser [17, p. 110] failed to notice that, when p and r are odd, 
(2p, 2r 12, 2)~ 5Dp x 5Dr. ) 

If r is even while p remains odd, we have V' = 1. Since [(p, 2) +, r], of order 
2pr, is generated by the three elements R 1 R 2 = U  p+I, R 1 R 3 = V U  p, R , = U  p, 
we have 

[(p, 2)+,r]~-(2p, r[2,2) (p odd, r even). 

It is interesting to observe that, if p and r are both odd, the direct product 
[p] x Jr] --- [p, 2, r] is generated by the two elements 
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If p and r are both even, so that  U p = V  r = 1, the group (p, r L 2, 2) (of order 
pr, generated by U =  R,  R 2 R 4 and V = R  1 R 3 R4) is a subgroup of index 2 in 
[(p, 2) +, r] (p and r even). 

The same abstract  group (p, r l2, 2), defined by 

U P = V r = ( U V ) 2 = ( U V  1)2=1  (p and r even), 

arises again as a subgroup of index 2 in [p, 2+,r] (generated by R~, R 2 R 3, 
R4); but  now, instead of R 1 R e R 4 and R~ R 3 R4, the generators are 

U = R I R 2 R 3 , V = R 2 R 3 R 4. 

When  p=r, we can augment  the group [p, 2+,p] (generated by R~, S 
= R 2 R3, and Re) by adjoining T (which transforms R 4 into R 1 and commutes  
with S) so as to obtain a group of  order 4p 2 with the presentat ion 

i ~  = S 2 = T 2 = (R 1 S) p = (ST) 2 = (R 1 T) 4 = (R 1 ST) 4 = 1. 

In terms of  A = S R ~ ,  B = R ~  T, C = T R  1 S, this becomes 

a '  = B 4 = C 4 = (AB) 2 = (BC) a = (CA)  2 = (ABC) 2 = 1 

[17, pp. 96, 1391. Thus 

[[p, 2 + ' p] ]  ~ G 4, 4,p (p even). (2.39) 

As a limiting case we may allow p and r to become infinite while we still 
have q = 2, so that  the or thoscheme in spherical space becomes an infinitely tall 
prism whose cross-section is a rectangle (in Euclidean space). We may then 
work  in the plane of this cross-section, and the groups related to [o%2, ~ ]  
reproduce nine of Federov 's  seventeed 2-dimensional space groups [17, pp. 40- 
47]:  

p m m ~  [oo, 2, oo] 

p2--- [oo, 2, oo3 + 

p m ~  [o0+,2,  oo] 

cmm--_ [oo, 2 +, oo] 

p4m--- [ [oo,  2, oo13 

z [[oo, 2, oo]] +, 

, p l ~ [ ~ + , 2 ,  ~ + ] ,  

~[[oo*,2, oo*]], 

, pmg ~ [(oo, 2) +, oo], 

[[oo, 2 +, ~]],  

p 4 ~ [ [ ~ , 2 ,  ~3+1,  pgg~_(~ ,  ~ 12,2). 

It is natural  to ask how the above results can be reconciled with the 
published lists of crystallographic and non-crystal lographic point  groups. In 
the accompanying  table, the second column gives the symbol of  Du  Val [19, 
pp. 57, 613, which was used also by Warner  [30, p. 3861. The third column 
gives the symbol of  Brown et al. [3, pp. 360, 369-376, 386-390, 397-4031, which 
begins with the order and continues, in each crystallographic case, with an 
arbitrary serial number ;  ' (non-c.) '  stands for 'non-crysta l lographic ' .  The last 
co lumn gives, in some cases, an alternative symbol  for the abstract  group or 
' i somorphism type ' :  usually the symbol as a permutat ion group. For  a detailed 
account  of all the crystal lographic point groups, see Hurley [22]. 
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Presentation Du Val's symbol Order and Alternative 
symbol serial number symbol 

[3, 3, 23 + (T/C 2 ; T/C2) "[( 
[(3, 3) +, 23 (T/C 1 ; T/C0* ) 24.10 
[[3, 2, 3] + ] (D3/C 3 ; D3/C3)* 36.14 
[4, 3, 2] + (0/C2 ; O/Cz) ] 
[3, 3, 2] (O/C~ ; O/C1)* } 48.36 
[(4, 3) +, 2] (O/C a ; O/C0* 
[3 +, 4, 2] (T/C2 ; T/C2)* 48.22 
E3, 3, 3] + (F/C1 ; I / C y  60.13 
E3 ,, 2,1] + (T/V; T/V) 96.1 
[4, 3, 2] (O/C 2 ; O/C2)* 96.5 
[3, 3, 3] (I*/C 1 ; I /C0 t* 
[[3, 3, 3] + ] (I,/C1 ; i /CO,  , )120"1 
[[3, 3, 3]] + (F/C2 ; I/C2) t 120.2 
[5, 3, 2] + (I/C2; I/C2) 
[(5, 3) +, 2] (I/C 1 ; I/C1), ) 120 (non-c.) 
[4, 3, 3] + (O/V; O/V) 192.3 
[(3, 3) +, 4] (T/V; T/V)* 192.1 
[31,1. ~] (T/V; T/V)*_ 192.2 
[E3, 3, 3]] (F/C 2; I/Ce)** 240.1 
[5, 3, 2] (I/C2 ; I/C2)* 240 (non-c.) 
I-3 +, 4, 3 + ] (T/T; T/T) 288.1 
[4, 3, 3] (O/V; O/V)* 384.1 
[3, 4, 33 + (O/T; O/T) 576.2 
[3 +, 4, 3] (T/T; T/T)* 576.1 
[[3 +, 4, 3+]] (T/T; O/O) 576 (non-c.) 
[3, 4, 3] (O/T; O/T)* 1152.1 
E1,3, 4, 3] +1 (O/T; O/T)~ l 152 (non-c.) 
[1,3, 4, 31] + (O/O; O/O) I152 (non-c.) 
[[3, 4, 311 (O/O; O/O)* 2304 (non-c.) 
[5, 3, 3] + (I/l; I/l) 7200 (non-c.) 
E5, 3, 3] (I/l; I/l)* 14400 (non-c.) 

~2 X ~[4 

(4,412,3) 

G 2 x ~4 

~z x 9.I 4 
9.I 5 

3 2 x ~4 

| ~(4,612, 3) 

G2X~ 5 

~2 X ~5 
~3 z x ~5 

~ 2 ~ 4  

(4,812,3) 

2.4. Wythoff's Construction and Its Numerical Consequences 

From a 4-dimensional kaleidoscope we can derive a uniform polytope whose 
vertices are the images of a point on the line of intersection of three of the four 
mirrors, or on the plane of intersection of two mirrors (equidistant from the 
remaining two), or on one mirror (equidistant from the remaining three), or 
quite inside the kaleidoscope (equidistant from all four). In other words, when 
the fundamental region for the reflection group is a spherical tetrahedron, a 
typical vertex of the uniform polytope is at a vertex of the tetrahedron, or on 
an edge (where it would be cut by the internal bisector of the dihedral angle at 
the opposite edge), or an a face (equidistant from the remaining faces), or quite 
inside (at the centre of the inscribed sphere). A suitable graphical symbol for 
the polytope is derived from the graph symbolizing the reflection group G (or 
its fundamental region) by drawing a ring round one, two, three, or all four 
dots, to distinguish those mirrors on which the chosen point does not lie. (This" 
is the same procedure that was used in w to derive a uniform honeycomb 
from a Euclidean tetrahedron.) 
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By removing one of the four dots, we derive a subgraph which is the 
symbol for a facet or face or edge or vertex, sometimes accompanied by a 
disconnected piece of graph (or possibly several such pieces) representing a 
group which leaves that element totally invariant. The disconnected piece (or 
pieces) must be included when we wish to compute the number of such s- 
dimensional elements 7c s in the polytope; for the whole subgraph, regardless of 
rings, symbolizes the maximal subgroup of G that preserves one 7zs, and the 
number of ~s's is the index of this subgroup: there is a coset for each ~ .  In 
other words, if F and 7 are the orders of the groups G and g symbolized by the 
whole graph and subgraph, regardless of rings, the number of rc~'s is F/7 [8, 
p. 43]. By removing further dots (adjacent to ringed dots) we eventually obtain 
symbols for all the elements of the polytope, and their number is always given 
by such a quotient F/7, possibly doubled or tripled. 

These ideas extend easily from 4 to n dimensions [8, p. 49; 11, p. 202]. For  
instance, when n=2,  alternate edges rc 1 of the hexagon 

@---@ 

are represented by the two ringed dots, and although in this case Fly = 6/2 = 3, 
the number of edges is 6: three of each 'type'. When all the dots are ringed (as 
in this 2-dimensional example), the symbol for a vertex is the null graph, 7 = 1, 
and the polytope has F vertices. In other words, the vertices and edges of the 
uniform polytope constitute a Cayley diagram for G. 

When n - 1  of the n dots are ringed, we have a Cayley diagram for the 
rotation group G +, as in the Appendix to Part I (see footnote 37 on p. 401). 

When the symbol for an element ~ is disconnected, so that the subgroup g 
is a direct product, it may happen that ringed dots occur in several pieces of 
the symbol. In the case ~ is the Cartesian (or 'rectangular') product of the 
elements symbolized by these pieces. For  instance, two isolated dots, both 
ringed, symbolize a square, as on page 394 of Part I. 

When only one dot is ringed, so that we are considering the images of one 
vertex P of the fundamental region, we can obtain a symbol for the vertex 
figure (whose vertices lie on the edges through P) by removing the one dot and 
ringing all neighboring dots. For instance, the regular polytope 

-" - - - { p , q , r } ,  ~ p  q r 

whose cell is 

has vertex figure 

| p -  q - - {P ,q} ,  

= {q, r}. 

A slight complication arises when the links joining the 'one dot '  to its neigh- 
bours bear different marks [-8, p. 50]. For  instance, the vertex figure of 

; = t i { p , q , r  } O p @ q  r 

is a prism of height 2 cos ~/p whose base is an r-gon of edge 2 cos ~/q. 
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The notation t~//11 extends naturally to 

ta, b, ... / / t l  

in which the rings are placed on the dots respresenting R~+~, Rb+  1 . . . . .  In 
particular, t o H11 is F/11 itself, and t11_ ~ 1/11 is the reciprocal of//11. However, when 
two or more dots are ringed, there is no such simple rule to determine the 
vertex figure. 

The graphical symbol for a uniform polytope (or honeycomb) also enables 
us to compute the number of r-dimensional elements G to which a given 
element G belongs (so that s<r). If there are any such elements G, any ringed 
pieces of the subgraph symbolizing G must, of course, occur in the subgraph 
symbolizing G. The complete symbol for G, regardless of rings, represents the 
subgroup g of G that preserves G. The common part of such symbols for G 
and G represents the subgroup g' of g that preserves not only G but also one 
of the incident G's. There is one such G for each coset of g' in g. Therefore the 
number of G's incident with G is equal to the index of g' in g. In particular, if 
the subgraph symbolizing G contains the whole of the subgraph symbolizing 
G, including any pieces that carry no ring, then g'--g and the number is 1. If 
the two subgraphs have nothing in common, g' is trivial and the number is the 
order of g. 

2.5. Four-Dimensional Polytopes 

In dealing with the group An~[3 , 3 . . . .  ] and the regular simplex %={3,3,  ...}, 
it is natural to discard the familiar n-dimensional coordinates (xl . . . .  ,x11) in 
favour of (n+ 1)-dimensional coordinates (ul, ...,u11, un+~) with Nu~=0, that is, 
to work in the hyperplane Xu~=0 of a Euclidean (n+ 1)-space. (It is almost as 
appropriate to work in the parallel hyperplane Xu~ = 1, in which case we could 
regard the u~ as 'barycentric' coordinates.) The group [3, 3 . . . .  l ~ ~,+~ is gener- 
ated by reflections in the n mirrors 

Ul = U 2 ,  U 2 = U 3 ,  . . . ,  "gln=bln+l~ 

that is, by the consecutive transpositions 

RI=(1  2), R2=(2 3) . . . . .  R ,= (n  n+l ) .  

A typical point lying on all these mirrors except Ua+l=Ua+ 2 satisfies the 
remaining n - 1  equations, so it has a + l  coordinates n - a  followed by n - a  

- ( a + l ) .  The (n+~l vertices of ta% are given by all the per- coordinates 
\ 1 / a +  

mutations of these n + l  coordinates. Similarly, a typical vertex of ta, b,...% is 
equidistant from the mirrors 

/~a+l  = U a + 2 ~  

and lies on all the rest of them. 

Ub+ I = /Ab+ 2, . . .  
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When  n = 4, these typical vertices are as follows: 

for e 4 = t 0 c ~ 4 = ~  * -" . , (4, 

for  t Ict 4 = . ~ ~ . , (3, 

for t o , l a 4 = - ~  $ -" _- , (7, 

for t 0 , 2 ~ 4 = ~  -" �9 . , (6, 

for t l , 2 ~ 4 =  �9 ~ �9 , (1, 

f o r e ~ 4 = t 0 , 3 e 4 = e  �9 -- ~ , (1, 

for to, l , 2 ~ = ~  . , (9, 

for t o , 1 , 3 c ~ 4 = ~  ~ ~ ,  (8, 

for to, 1, 2, 3 ~4 = ~ - - ~  , (2, 

[14, p. 127]. The  last of these, whose 

- 1 ,  - 1 ,  - 1 ,  - 1 ) ;  

3, - 2 ,  - 2 ,  - 2 ) ;  

2, - 3 ,  - 3 ,  - 3 ) ;  

1, 17 -4 ,  -4);  

1, 0, - 1 ,  - 1 ) ;  

0, 0, 0, - 1 ) ;  

4, - 1 ,  - 6 ,  - 6 ) ;  

3, -2 ,  -2 ,  -7) ;  

1, 0, - 1 ,  - 2 )  

120 vertices are given by all the per- 
muta t ions  of 5 consecutive integers, is 'H in ton ' s  po ly tope '  [8, p. 73]. Berge [1, 
p. 135] calls it the 4-dimensional  permutohedron and provides (on the next 
page) a good drawing of the analogous  t runcated oc tahedron  to, 1,2 c~3 =to,  1 f13. 
Fo r  this poly tope  to,~,2,3c~4, and also to,3~4, t l , 2 ~ ,  the comple te  symmet ry  
group  is not  merely  [3, 3, 3 ] ~ - a  s but  the extension [[3, 3, 3]]. This includes 
the half-turn T tha t  rotates  the fundamenta l  region for [3, 3, 3] into itself, as 
we saw in w Since the symmetr ic  group  includes the half-turn (1 5)(2 4), 
whose produc t  with T is the central  inversion ( t ransforming the simplex c~ 4 into 
its reciprocal  t 3 ~4), we have 

[[3, 3, 3]] ~ ~ • r 

There  are, in general, 2 4 - 1  = 15 ways to place rings on the 4 dots in the 
graph  for [p, q, r]. But when p = r ,  as in the case of [3, 3, 3] or [3, 4, 3], the 
graph  has bilateral  symmet ry  and only nine of the fifteen polytopes  are dis- 
tinct: we have t3 C~4=~4, t 2 ~ 4 = t l  ~4, and so on. 

Ordinary  n-dimensional  coordinates  are appropr ia te  for the n-cube ~n 
= {4, 3, 3,. . .} and its reciprocal  /~n = {3,. . . ,  3, 4}, because their symmet ry  group 
Bn~ [4, 3, 3, .. .], of order  2~n!, includes all sign changes and permutations of the 
n coordinates. In other words, [ 4 , 3 , 3 , . . . ]  is the wreath product ~ 2 ~  [12, 
pp. 31, 118]. Its n generators  are R~, which reverses the sign of xl ,  and the 
consecutive t ransposi t ions  

R2=(1 2), R~=(2 3),..., Rn=(n-1 n). 

They are represented by reflections in the hyperplanes  

X l ~ - 0  , N I ~ X 2 ~  X 2 ~ X  3, . . . ,  X n _ I ~ X  n. 

Solving n - 1  of these n equations,  we see that, if a + b = n, a typical  vertex 
of t a 7n = t s -  ~ /?n has, for coordinates,  a zeros and b ones. The  remaining  vertices 
are obta ined  by changing the ones to _+ 1. In part icular,  when a = 0  and n = 4, 
we see that  the 16 vertices of the 4-cube or ' t esserac t '  74 are 

( _ 1 ,  _1 ,  +1 ,  +1) ;  
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when b = 1, that the 8 vertices of its reciprocal fig (the '16-cell') are (_+ 1, O, O, O) 
permuted; and when b=2,  that the 24 vertices of the truncation ttl~ig are 
(__+ 1, +_ 1,0,0) permuted [11, p. 156]. 

Other polytopes related to f14 and 7ig are derived almost as easily. For 
instance, a typical vertex of 

to, 1,2 ?ig=tl,2,3 fi4 

lies on the hyperplane x3=xig in a position equidistant from x 1 =0, x 1 = x  2 and 
x 2 = x 3. Since the interior of the fundamental region is given by 

we solve the equations 
X I > 0 ,  XI <X2<X3<X4, 

X 2 --X 1 X 3 --X 2 
X I =  V/~ ] ~  ' X3=X4 

(with x 1 = 1 for convenience), obtaining 

x l = l ,  X2=~2+1,  

fi4={3,3,4} = ~  �9 -- -- =| (8 vertices), 4 

{3, 4, 3 } = ~  , -- ~ =~ ~ = ~ (24 vertices), 4 

t l ? ~ =  ~ -- "- ="  -" ~ U ' =  = (32 vertices), 

t ,  {3,4, 3} = ~ = @ �9 (96 vertices), 

tO, l f14 = ~ (48 vertices), 

(96 vertices), 

(192 vertices). 

x3 = x 4 = 2 ] / 2 +  1. 

Thus the vertices of to, 1,2 74 are the permutations of 

(1, I f 2 +  1, 2 V~+  1, 2 l f2 + 1) 

with arbitrary changes of sign [i4, p. 130]. 
The coordinates (+  1, +_ 1, 0, 0) (permuted) for t 1 fia illustrate the role of the 

subgroup relationships that occur among the three groups 

[3,4,3], [4,3,3], [31'~'1] 

(see w In fact, along with the eight genuinely 'cubic' polytopes 

?4, t0,174, to,274, to,1,274, to.a,3?4, to,3f14, t0,1,3f14, t0,1,2.3fl~-, 

there are seven which are also derivable from [3, 4, 3] or [31' 1,1], namely: 

--. . .  

C = t l / 3 4  

- - . ~ = t 2  fi4 

-....=to,2 

-.o 

t l ,2f14 

to,1{3, 4, 3} = ~ - - - ~ - ~  ~ ~ = ~ = t o . l , g f l i g  
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These coincidences can easily be verified by comparing the positions of a 
typical vertex in the three kinds of fundamental region. In the notation of w 2.2, 
the appropriate positions in these seven cases are c,d, e,f, a point on dc, a 
point on de, and a point on d f  

The six remaining polytopes derivable from the group [-3, 4, 3] are 

to,2, to,3, tl,2, t0,1,2, t0,1,3, to,1,2,3 

all applied to {3, 4, 3}. Coordinates for their vertices can be found by taking 
the generators of [3, 4, 3] to be reflections in the 4 hyperplanes 

X I = 0  , XI-~X2~'X3-I-X4, X2J-X3, X3=X4.. 

The first three equations yield (0, 1, 1, 0) and hence the permutations of (+  1, 
+ 1, 0, 0), as before. But the last three yield (1, 1, 1, 1), which is a vertex of the 
reciprocal {3, 4, 3} : 

(+1,  +1, +1, +1) and (+2,0 ,0 ,0)  permuted. (2.51) 

Related polytopes are easily deduced. For instance, a typical vertex of 
to, 1, z, 3 {3, 4, 3}, being equidistant from the 4 hyperplanes, is given by 

X3-~X4.--X1--X2 X3--X2 X4--X 3 
x , -  2 1/2 - ] /2  ' 

and the rest of the 1152 vertices can be deduced by applying the reflections 
(including the 'non-trivial' reflection R2). 

Clearly, [3,4,3] is the whole symmetry group of {3,4, 3}, to,1{3, 4, 3}, 
t1{3,4,3 }, etc. But for the three which have symmetrical graphs, namely 
to,~{3,4,3}, t l ,2{3,4,3 } and to,1,2,3{3,4,3}, the symmetry group is [-[-3,4,3]], 
of order 2304, as it includes the half-turn T that rotates the fundamental 
region for [--3,4, 3] into itself. Unlike [-3, 3, 3], [-3, 4, 3] contains the central 
inversion (which reverses the sign of each coordinate) [-11, p. 226], so the 
extended group [[-3, 4, 3]] is not the direct product of [-3, 4, 3] and g2. For a 
presentation, see (2.28) with q = 4. 

The square faces of to, 3 {P, q, P} form the regular skew polyhedron {4, 2q I P} 
mentioned in connection with (2.26) [-8, pp. 87-89]. 

For the group [5, 3, 3], of order 14400, we can use the four mirrors 

"~XI~X2"{-X3-~-X4, X1-.~-X2, X2-.~.X3~ X3~X 4. 

The first three equations (with x 1 = x z = x  3 =z, for convenience) yield a vertex 
(z,z,z,z -2) for the 600-cell {3,3,5}. Here we are writing z for the 'golden 
section' number (}/5+1)/2. The complete set of 120 vertices is then found to 
consist of the permutations of 

(z,z,z,* -2) and (T2~T-I,~'-I,'~ -1) 

with an even number of minus signs, 

(1//5, 1, 1, 1) with an odd number of minus signs, and 

(+2,  +2,0,0).  
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The corresponding coordinates for the reciprocal 120-cell {5, 3, 3} (using the 
last three equations) are so unpleasant [11, p. 240] that it seems preferable to 
use a different set of equations for the same four mirrors, namely 

72Xl=Xa-l-"C-lX3, Xl~---0 , XI +X2-~-X3-~x4=O, x4=O. 

The last three equations now yield the familiar coordinates for {5, 3, 3} [11, 
p. 157], while the first three yield, for the 600-cell {3, 3, 5}, 

the even permutations of (+  z, + 1, _+ z - 1, 0), 

the permutations of (+2,0,0 ,0) ,  and (+1,  +1, _+1, _+1) 

[-27, pp. 211-213]. The reader may similarly find coordinates for the vertices of 
the rest of the fifteen polytopes in this family. These polytopes are all distinct, 
but three of them have each two equally simple names: 

to, 3 {5, 3, 3}- to ,  3 {3, 3, 5}, tl,2 {5, 3, 3} =tl ,2{3, 3, 5}, 

to, 1,2,3{5, 3, 3} =to, 1,2,3{3, 3, 5} 

(because the graphs can be turned upside down). Following Mrs. Boole Stott, 
Wythoff [31, pp. 967, 969] called these three 

e3 C 6 0 0 ,  cel e2 C600, el e2e3 C600. 

Again, as for the [3, 3, 3] family, it is sometimes desirable to use f i ve  

coordinates which can be freely permuted. Such coordinates (ul, u2, u3, u4, us), 
with sum zero, can be derived from (xl, x2, x3, x4, 0) by applying the transfor- 
mation 

21A 1 ~ - - X  1 -]- ~'2X 2 --~-"C- 2X 3 ,  

2U 2 = 7; - 2X 1 - - X  2 .-}- "C2 X3 ,  

2U 3 ~ ' c 2 X l + g - 2 X 2 - X 3 ,  

2 / /4  = - -  X 1 - -  X2 - -  x 3  -~ ] ~ X 4 ,  

2u5 = - x  1 - x  2 - x  3 - ] ~ x 4 ~  

which is valid since it implies 

r  1 : T -  1/A 2 + Tb/3~ 

~ X 2  ~ T -  1 U3 --t- T~/1, 

V / S x  3 ~ T - l u l  Ar-TU2~ 

V ~ X 4  z U 4 - -  b/5, 

5X 1 = ] / /5 (T  -- 1 U2 _~ TU3) = (~7 -- 2 "J7 1) U 2 -~ ('IJ 2 "~- 1)  IA 3 - -  ~b /  

- -  Ul -1- T -  2 b/2 + "g2 U3 - -  b/4 - -  U5 ~ etc., 
and the matrix 

1 

- - 1  "c -2 72 2 --1 --1 

r 2 --1 ~--2 --1 --1 

"C - 2  72 2 - 1  - 1  - I  

o o o r 
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is orthogonal. In terms of the u coordinates (with sum zero), the 120 vertices of 
{3, 3, 5} are the permutations of 

2o 

('c2, z-2, - 1 ,  - 1 ,  -1) ,  (1,1,1, _ 'c-z,  _zz), 40 

(2, Z- 1, Z -1, --% --'C), (Z, 'c, --Z -1, --Z -I ,  --2), 60 

120 

while the 600 vertices of {5, 3, 3} are the permutations of 

( 4 , - 1 , - 1 , - 1 ,  -1),  (1, 1, 1, 1 , -4) ,  

( ' c - l , z - : , : - ~ , 2 , - c r ) ,  (G,  - 2 ,  - 'c - 1 ,  _ 

('c,'c,'c, - 2 ,  -C) ,  

('C ] /5 ,  0, 0, -- %'- 1 ] /5 ,  -- ] /5) ,  

(2,2, z -1, -'c, -3),  

(g2,2"C-1,"C-2, --1, -- 2"C), 

'C-1 __'C 1), 

(a',2,  --Z, --'C, --T), 

z -  0, 0, - ' c  

(3, z, - ' c  - I ,  - 2 ,  -2) ,  

(2z, 1, _'c-2, _2'c-1, _z2), 

l0 

30 

40 

4o 

120 

120 

240 

600 

where ~ =(31//5+ 1)/2 and o-' =(3 l f 5 - 1 ) / 2 =  r  1 [11, pp. 240,301]. 
It is interesting to observe that the first row of this last table exhibits two 

of the 120 regular simplexes ~4= {3, 3, 3} that can be inscribed in {5, 3, 3} [11, 
p. 304 ('Section 180')]. The second row exhibits an inscribed tl, 2 e4 similar to 
the one given by the permutations of ( 1 , 1 , 0 , - 1 , - 1 )  or (2,2,1,0,0) [14, 
p. 127]. Similarly, the first 20 vertices of the above {3, 3, 5} belong to a to, 3 e4 
similar to the one given by the permutations of (1,0,0,0, - 1 )  [6, p. 470-475]. 

Since the 10 pairs of opposite vertices of to, 3 cq are interchanged by the 10 
reflections that occur in [3, 3, 3], while the 60 pairs of opposite vertices of 
{3,3,5} are interchanged by the 60 reflections that occur in [5,3,3], the 
subgroup [ 3 , 3 , 3 ] _ ~  5 of [5,3,3] is thus seen to be generated by a subset of 
those 60 reflections. 

2.6. Four-Dimensional Honeycombs 

We return now to the infinite reflection groups listed at the end of w For 
the group 44, symbolized by a pentagon, the 5 mirrors may be taken to be 

u t = u  2, u 2 = u  ~, u3=u 4, u 4 = u  5, u s = u 1 - 1  (2.61) 

in the 4-space S u~ = 0. More precisely, the fundamental region is the Euclidean 
4-simplex 

u l > u  2>u 3 > u 4 > u  s > u  1 - 1  

[18, pp. 151-153]. The first four reflections generate the symmetric subgroup 
[ 3 , 3 , 3 ] ~  5 that permutes the five coordinates, while the fifth takes 
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(Ul, U2, b~3, U4, U5) to (U 5 + 1, U2, U3,1/4, Ul -- 1). Thus the whole group  ~zl 4 allows 
us to add 1 to one coordinate while subtracting 1 from another. Solving the 
first four of the Eq. (2.61) along with Zuv=0,  we see that the fifth vertex of the 
simplex is the origin (0,0, 0, 0,0) whose orbit consists of all the points whose 5 
coordinates are integers with sum zero. These are the vertices of the 'alpha- 
hedroid' e4h whose symbol is a pentagon with a ring round one vertex [4, 
p. 135; 5, p. 366]. Since the difference of any two such points, regarded as 
vectors, belongs to the set, the vertices of ~4h, like those of 0~ 2 h = {3,6} and 
% h = h 64 (see w 1.9, p. 402), form a lattice. 

Six other honeycombs can be obtained by putting rings round two vertices 
of the pentagon, adjacent or non-adjacent, or round three vertices, consecutive 
or separated, or round four vertices, or all five [8, p. 733. In each case a typical 
vertex arises as the solution of a set of four equations. For  instance, when all 
the five vertices are ringed we have 

U l - b / 2 ~ u  2 - u  3 ~ u  3- /3  4 ~ u  4-13 5 ~ u  5 - u  1~-17 

and the typical vertex is 2 1 (>>o, _z) 5 or, by a convenient change of scale (so 
that now we can add 5 to one coordinate while subtracting 5 from another), 

(2, 1,0, - 1 ,  -2) .  

This is Hinton's honeycomb [21, p. 225] whose vertices are given by all sets of 
5 integers mutually incongruent modulo 5, with sum zero. Thus every cell is a 
'permutohedron '  to, a, 2, 3 c~4. 

When the number of rings is less than 5, the various kinds of cell are other 
derivatives of the regular simplex cq; their symbols are derived by omitting 
each vertex of the simplex in turn [14, pp. 128-129]. 

For the lattice %_1 h, symbolized by an n-gon with one ring, the simpler 
name 0E< is suggested by analogy with [3 E<] and 01j [14, p. 131]. Thus 0131 
= {3, 6} and 0141 = h 64. 

Since the 4-dimensional cubic lattice c55 = {4, 3, 3, 4} is formed by the points 
whose coordinates are any 4 integers, a characteristic orthoscheme has for its 5 
vertices the origin (0,0,0,0), the midpoint (�89 of the edge going to 
(1,0,0,0), the centre 1 1 (>>0 ,0 )  of a square {4}, the centre 1 1 (3, 3, �89 0) of a cube 

r ! • !~ of a cell {4,3, 3}. Thus the five mirrors for the {4, 3}, and the centre t2, 2, 2, 2] 
reflection group Cr = [4, 3, 3, 4] are 

XI=�89 XI=X2, X2=X3, X3 =X4, x4=O;  (2.62) 

more precisely, the fundamental region is given by 

�89 

The 'middle' reflections R2, R 3, R 4 generate the symmetric subgroup 
[3, 3] ~ | that permutes the four coordinates, while R s reverses the sign of x4; 
thus any sign can be reversed. The product of the reversal of x l with R1 is the 
translation that adds 1 to xa. 
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As an instance of Wythoffs construction, let us find a typical vertex of 
to, 1 65 by solving the four equations 

�89 x2=x3=x4=0. 

1 0 The result, ( 1 - 1 ~  ~, ,0,0), shows that the whole set of vertices is given by 4 
integers to just one of which _+1~-~ is added. 

Among the vertices of 65, we can pick out half by insisting that the integral 
coordinates have an even sum. We thus obtain the 'alternated' lattice 

h 6 s = {3, 3, 4, 3} (2.63) 

of edge-length 1/~ [11, p. 158]. The edges through (0,0,0,0) go to the 24 points 
(_+1, _+1,0,0) permuted, which are the vertices of {3,4,3}, in agreement with 
the Schl~ifli symbol {3, 3, 4, 3}. 

Applying the similarity ( X l , X z , X 3 , X 4 ) ~ ( x t  + x 2 , x z - x 2 , x 3  + x4, x 3 - x 4 )  , 
we obtain a larger {3, 3,4,3}, of edge-length 2, whose vertices have coordinates 
which all even or all odd, those joined to the origin being (2.51). A typical cell 
/34 = {3, 3, 4} has the 8 vertices 

(0,0,0,0), (2,0,0,0), (2,2,0,0), (0,2,0,0,), (1,1,+1,+_1). 

Since the centre of this/34 is (1, 1, 0, 0), the vertices of the reciprocal honeycomb 
{3,4,3,3} are all the points whose coordinates are two odd and two even. These 
points do not form a lattice, but they can be derived from the 'small' lattice 
{3,3,4,3} (coordinates with an even sum) by deleting the vertices of a larger 
{3,3,4,3} (coordinates all odd or all even) which is reciprocal to the {3,4,3,3}. 
In other words, the set of vertices of {3,4,3,3} is the 'difference' between two 
similar, but not homothetic, lattices {3, 3, 4, 3}, just as, in two dimensions, the 
set of vertices of the non-lattice tessellation {6, 3} is the 'difference' between 
two similar, but not homothetic, lattices {3,6} [11, p. 64]. 

Since {3, 4, 3, 3} has for its vertices the permutations of (1, 1, 0, 0) (mod 2), its 
characteristic orthoscheme has one vertex (1, 1,0,0), another at the midpoint 

1 1 1 1 1 1 (1,~,7,0) of the edge going to (1,'0,1,0), a third at the centre ( ,3, of ~, 3) the 
triangle {3} joining this edge to (1,0,0, 1), a fourth at the centre (1,0,0,0) of an 
octahedron {3, 4} in the hyperplane x 1 = 1, and a fifth at the centre (0,0,0,0) of 
the cell {3,4,3} given by the permutations of (+_1,_+1,0,0). The facets of this 
orthoscheme 

(1, 1,0,0) (1, 1 1 [1 1 _1 lh g,~, O) ,~, 3, 3, 3, (I, O, O, O) (0, O, O, O) 

lie in the hyperplanes 

X 2 = X 3 ,  X3-~-X4, x 4 = O  , XI=X2"I-X3-JrX4, x a = l .  (2.64) 

These are the mirrors for the reflections R l, R 2, R3, R 4, R 5, represented by 
the dots in the graph 



Regular and Semi-Regular Polytopes. II 581 

for the group /~4 ~ [3, 4, 3, 3]. Since R 3 transforms x 3 = x  ~ into x 3 + x , = 0 ,  and 
R 4 transforms this into x~ =x2,  the group includes the transposition 

(t 2)= R 4 R 3 R z R 3 R 4 

as well as (2 3)= R 1 and (3 4)= R 2. Thus all the coordinates can be permuted. 
The product of the reflections in x l = 0  and x ~ = l  (the latter being Rs) is the 
translation that adds 2 to x 1. Thus we can add any even number to any 
coordinate. 

Related honeycombs are easily obtained by solving suitable linear equa- 
tions. For instance, a typical vertex of to, ~ {3, 4, 3, 3}, given by 

X2--X3=X3--X4, X4=0 , X2-{-X3q-X4=Xl=l, 

is 2 1 (1, g,-~, 0). Multiplying by 3 to avoid fractions, and allowing reversals of sign, 
we see that the vertices of to, a {3, 4, 3, 3} are all the permutations of 

(3, _+ 2, + 1, 0) (mod 6). (2.65) 

From the group/~4--{4,3,~},  with mirrors 

1 XI- -~  Xj.=X2~ X2~X3~ x3 =x4,  (2.66) 
X3-f- X4=0,  

we obtain an alternative symbol for t 1 85 by putting rings on both the 'special' 
dots. If instead we ring just one of them, we obtain the alternated lattice h 35 
(2.63). By analogy with the notation in the table on p. 403 of Part I, we can 
insert extra rings to obtain 

h2c] 5 , h365, h465, h2,3 c]5, h2,4 65, h3,4 65, h2,3,4 65. 

For instance, ha, 4 c55 is 

Because the four groups/)4 , /3~,  C4, fie are intimately related (see the end 
of w the corresponding honeycombs can often be derived several ways. 
Along with (2.63), we have 

h2 c55 = to, i {3, 3, 4, 3}, 

h2,3 6s = t l ,  2{3, 3, 4, 3}, 

h3 6s =t2{3, 3,4, 3}, 

t2 c~s = {3,4,3, 3} = t~ {3, 3,4, 3}, 

tl,3 65 =t1{3,4,3,3}, 

tl,e,3 ~5 =to, 1 {3,4, 3, 3}. 
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This list includes all the honeycombs that could be derived from the group/)4 ,  
whose mirrors may be taken to be 

x 1 =0, x4 =0  , 

S.x~=l, 

x2=0,  x 3 =0  

[-8, p. 481. 

2.7. The Four-Dimensional Analogues of the Snub Cube 

Instead of using the whole reflection group G, as in w we can sometimes 
derive a uniform polytope as the convex hull of the transforms of a point Q 
under the rotation subgroup G +. If Q lies on one or more of the mirrors, this 
orbit of Q is the same as if we had used the whole group G; so now we may as- 
sume that Q does not lie on any mirror but is an interior point of the spherical 
simplex which is a fundamental region for G. The convex hull of the orbit (for 
G +) of such a point Q may be described as a general snub polytope. Among all 
the finite reflection groups G, we seek those which admit a position of Q 
yielding a uniform snub polytope. 

From the graph that symbolizes G, we derive an appropriate symbol for the 
general snub polytope by changing every dot into a ring, as in w 1.5 (p. 394). 
For  instance, when the mirrors are two intersecting lines in a plane, or two 
points on a circle, the snub polytope is a p-gon 

o-  9 

which is (in this exceptional case) regular for all positions of Q. 
As we saw in w and w the n mirrors and their transforms by G 

decompose the (n-1)-sphere into congruent (n-1)-dimensional spherical sim- 
plexes, any one of which will serve as a fundamental region for G. We may 
describe these simplexes as being alternately white and black (or 'shaded', as 
on p. 392 of w 1.5), so that two of the same colour are directly congruent while 
two of opposite colours (such as two that are adjacent) are oppositely con- 
gruent. If Q lies inside a white simplex, the remaining vertices of the general 
snub polytope /7, are corresponding points in all the other white simplexes. 
The number of vertices o f /7 , ,  being equal to the number of white simplexes, is 
half the order of G; that is, the number of vertices is equal to the order of G +. 

Every black simplex is surrounded by n white simplexes, each containing a 
vertex of /7 , .  These n vertices form an ( n -  1)-simplex r , _  1 which is one of the 
facets of 17,. The number of facets of this type, being equal to the number of 
black simplexes, is again half the order of G. Another type of facet (occurring 
whenever n>2)  is an (n-1)-dimensional  snub polytope /7,_1, derived from 
n - 1 of the n mirrors, namely those which pass through any particular vertex P 
of the white simplex containing Q. The symbol for /Tn-1 is derived from the 
symbol for /7, by removing one of the n rings (along with any links which 
emanate from that ring). The number of facets of this type (for each particular 
ring) is equal to the index of the appropriate subgroup of G. 
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Every vertex of f / , ,  such as Q, belongs to n facets /7,_1 (of various kinds) 
corresponding to the n vertices of the fundamental region or to the n rings in 
the symbol. Q also belongs to n facets Z,_I,  corresponding to the adjacent 
black simplexes. 

The case when n = 2  is exceptional, because the one-dimensional snub 
polytope, represented by a single ring, collapses to a point. The s and/71's  
of the p-gon ff12 a r e  its sides and vertices. 

When G is [4, 3] (or [3, 4]), of order 48, we have the snub cube 

fA '~  

s t~  ~, which might more consistently have been named 'snub cuboctahed- or  

ron', and we verify that it has 24 vertices, 24 triangles 272, 48/8=6 squares 

(>TO, and 48/6=8 triangles o---O (making 24+8) triangles altogether). 

The remaining faces of type / / 2  (symbolized by the two outermost rings alone) 
are digons which we naturally regard as collapsing to form 48/4= 12 edges, 
each separating two triangles Z z. The remaining 48 edges consist of the 24 
sides of the 6 squares and the 24 sides of the 8 triangles / I 2 "  

o f s ~  t are especially significant as being the solution, The 24 vertices form 
L-- J  

=24, of the Problem of Tammes [29] which asks for the distribution of m 
points on a sphere so as to maximize the minimal distance between pairs of 
them. It has been solved for m_<12 but not for 12<m<24.  

Since snub polygons are necessarily regular, a snub polyhedron is uni- 
form whenever its triangles Z 2 are equilateral. It follows (by induction) that a 
snub polytope/7,  is uniform whenever its facets 2;,_1 are regular simplexes, for 
then its facets 17,_ a are automatically uniform and all its 2-faces are regular. 

To ensure uniformity of the general snub po ly tope / / , ,  the location of the 
initial point Q is, in the 2-dimensional case, arbitrary; in the 3-dimensional 
case, it is just determinate, as we saw in w (on p. 393). In more than 3 
dimensions, it is nowhere to be found, except in a few special cases; for, as we 
shall soon see, the conditions to be satisfied impose certain restrictions on the 
angles 7c/q,v of the fundamental region (see (2.11)). The crucial case is in 4 
dimensions, since the graph for a 5-dimensional group is admissible only if 
every subgraph derived from it by removing a single dot symbolizes one of the 
admissible groups in 4 dimensions. This condition (for the uniformity of a 5- 
dimensional snub polytope) will be seen to be sufficient as well as necessary. 

In any snub polytope/7, ,  let Q1Qz.. .Q,  be a facet Z,_~. The vertices Q~, 
being similarly situated points within all the white simplexes that surrounded 
one black simplex, are derivable from a single point Q' within the black 
simplex by reflecting in the n hyperplanes which determine that simplex. (Of 
course Q', lying within the black simplex, is not a vertex of/7, .)  If H, is to be 
uniform, the simplex Q1 Q2 .-. Q, must be regular, and so too must the similar 
simplex M 1 M2 ... M, (of half the linear size) whose vertices are the midpoints 
of the straight line-segments Q'Q.~. In other words, the snub polytope /7, is 
uniform only if there exists a point Q' whose orthogonal projections M~ on the 
n hyperplanes are the vertices of a regular simplex. 
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Let ta, ta, .. ., t, denote the (Euclidean) distances of Q' from the n hyper- 
planes. In the plane triangle Q' M,  M~, the sides tu--Q' Mu and t~= Q' M v form 
an angle ~z-rc/q,~ whose cosine is -cu~ (see (1.35)). Hence 

2 2 M~M v =tu +t2 + 2cuvtut~ (#~v). (2.71) 

But M,M~ is a typical edge of the simplex M1M z... M,  whose regularity is 
desired. Thus the n unknown (positive) lengths t l , t  2 . . . .  , t ,  should satisfy the 

--._.(;)-1 equations that arise by equating the (~)expressions (2.71)(with ~<v, 

say) to one another. Since the equations are homogeneous, and we are con- 
cerned only with the mutual ratios of the n x's, the problem has (as we already 

know from w a unique solution when n= 3. But when n> 3, so that (~) >n, 

the equations are consistent only if the coefficients eu~ take certain special 
values. 

A closely analogous theory of snub honeycombs arises when we consider 
infinite discrete groups generated by n reflections in Euclidean (n-l)-space. 
The condition for uniformity is still the consistency of such equations, only 
now the x's, instead of being oblique coordinates based on n concurrent 
hyperplanes, are distances from the facets of a Euclidean (n-1)-simplex; for 
instance, they are trilinear coordinates when n=3,  'tetrahedral'  coordinates 
when n = 4. 

The theory can be modified to cover reducible groups whose fundamental 
regions are Cartesian products of two or more simplexes. For instance, in the 
case of the first half of (1.91) (on p. 401), X 3 is not a single regular tetrahedron 
but a pair of such tetrahedra forming together a triangular bipyramid: the 
reciprocal of the fundamental region (which is a triangular prism). This snub 
honeycomb is h({6, 3} x { co}). 

Let us now examine the various groups G with n=4,  both finite in 4 
dimensions and infinite in 3, so as to determine which of the corresponding 
snub figures are uniform. 

Consider first the groups [2, q, r], where we allow p, q, r to take the value 2 
so as to admit the reducible groups whose graphs are disconnected. Since now 
ct3 =c14=c2~=0,  the equations reduce to 

t2 +t2 + 2c12tl t2=t2 +t2 + 2c23t2t3=t23+t2 + 2c34t3t 4 
2 2 2 2 _  2_17152 , =r -l-t3 = t l  + t 4 - - t 2  

whence t 3 = t 4 ,  t 1 -----t2, c 2 3 = 0  and 

2(1 + q 2)t  = + = 2(1 + e3 /t . 

Elimination of tl/t 3 yields c12+c34+2c12c34=0. Since the angle ~/q,v, whose 
cosine is eu,, cannot be obtuse, it follows that c12=c34=0. Thus the only 
admissible group [p,q,r] is [2,2,2], of order 16, whose graph consists of 4 
separate dots. The polytope 

0 O �9 0 (2.72) 
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has 8 vertices, and its facets are 8 tetrahedra 2; 3 and 8 tetrahedra I/3 (symbol- 
ized by 3 separate rings). It is obviously the regular 16-cell /~4= {3, 3, 4}. 
Analogously, the n-dimensional polytope symbolized by n separate rings is the 
half-measure polytope hT, [11, p. 156]. Its 2 "-1 vertices are alternate vertices 
of the measure polytope 7,={4,3, . . . ,3} which is symbolized by n separate 
ringed dots. 

The finite group [3 ~' t, 1] = and the infinite group [4, 31' 1] (see w 1.3, 

p. 386) may be considered together by writing c14=c2r c2a=c13=c12 
The equations 

2 2 t1+t4 +tl t4=tz +tz +t2t4=tz +t2 + 2C34t3t4 
2 2 t2+t2=t2+t 2 =t2+ t3  = 

imply t i = t 2 = t  a and c34=�89 Thus the snub polytope 

~ (2.73) 

or s , or (more conveniently) s{3,4,3}, is uniform (with tl=t2=t3='ct4) but 

the snub honeycomb (with one link marked 4) is not. Some 'nearly uniform' 
varieties of the latter were described by Merkel [-24; see also 13]. Similarly, the 
remaining infinite group [3 [4] ] yields another set of inconsistent equations 
and a 'nearly uniform' honeycomb of irregular tetrahedra and irregular icosa- 
hedra. We conclude that a uniform snub honeycomb in 3 dimensions cannot 
arise from a tetrahedral fundamental region but only from a triangular prism 
or a cube, as in (1.91) (see p. 401, 402). In both cases the cells surrounding a 
vertex consist of 8 tetrahedra and 6 octahedra. 

Since the order of [31'1'1] is 192, s{3,4,3} has 96 vertices, 96 tetrahedra 

2;3, t92/8 = 24 tetrahedra �9 �9 and 3 sets of 192/24 = 8 icosahedra 

o 

24 icosahedra altogether). Comparing (2.73) with the symbol % ~  (making 
o 

for {3,4,3}, and considering two specimens of the pyramidal fundamental 
region, one white and one black, with a common base, we see that each vertex 
of s{3,4,3} lies on an edge of {3,4,3}, but not at the midpoint of the edge. In 
fact, the 96 vertices of s{3,4,3} divide the 96 edges of the 24-cell {3,4,3} 
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according to the golden ratio "c:1 or ~-1:~-2 ( z - 1 + ~ - 2 = 1 )  [11, p. 152]. In 
the 24-cell given by permutations of (+_ 1, +_ 1,0,0), the typical edge (1, 1,0,0) 
(1, 0, 1, 0) is so divided at the point 

(1,z- 1,-c-2,0). 

Thus the 96 vertices of the snub 24-cell s{3,4,3} are given by the even 
permutations of (+_ 1, _+ v- 1, _+ ~- 2, 0) or, after a suitable dilatation, 

(• +I, • (2.74) 

[11, p. 157]. 
Since the base of the pyramidal fundamental region lies in the hyperptane 

that perpendicularly bisects an edge of {3,4, 3}, and R 1 is the reflection in that 
hyperplane, the symmetry group of s{3,4, 3} lacks R1 and R 2 and is precisely 
[3+,4,3], of order 576. 

Since each vertex of s {3,4, 3} belongs to 5 tetrahedra and 3 icosahedra, the 
vertex figure [11, p. 163] is an irregular polyhedron whose faces consist of 5 
triangles and 3 pentagons. The pentagons surrounded one of the triangles, and 
there is an 'opposite' triangle surrounded by the remaining 3 triangles. Thus 
the vertex figure of s{3,4,3} can be derived from the regular icosahedron 
{3,5}, which is the vertex figure of the 600-cell {3,3,5}, by cutting off pen- 
tagonal pyramids from three non-adjacent corners. Analogously, the whole 
s{3,4,3} can be derived from {3,3,5} by cutting off icosahedral 'pyramids' 
from 24 of the 120 'corners', namely the vertices of an inscribed {3,4,3} [11, 
p. 272]. 

We pass on to the case when n=5.  Here there is no need to use coor- 
dinates; for, a snub polytope in 5 dimensions, or a snub honeycomb in 4, 
cannot be uniform unless every facet of type/74 is uniform, that is, either a fi4 
(2.72) or an s{3,4,3} (2.73). Thus the only uniform snub polytope is the h75 
symbolized by 5 separate rings, and the only uniform snub honeycombs are 

o - g o  Owo ~ and ~ (2.75) 

For the former, G is ~o~ x ~3oo x ~o~ x ~oo and its fundamental region is the 
4-cube 74 = 7~ [11, p. 124]. The snub honeycomb is h as = {3, 3, 4, 3}, having one 
vertex at the centre of each white cell 74 in a 4-dimensional chess board [11, 
pp. 156, 158]. It has, at each vertex, 24 cells h~4=fi4={3,3,4 }. Of these 24 fi4's, 
8 are reciprocal to the 8 black 74'S that surround the initial white 74. Each of 
the remaining 16 is symbolized by 4 separate rings, one from each piece of the 
disconnected symbol for the whole snub honeycomb. There is an analogous 
( n -  1)-dimensional snub honeycomb h ~n for any value of n, but when n > 5 it is 
no longer regular: its cells consist of ~,_l's, 2 ( n - l )  at each vertex, and 
hTn_ i's, 2 n-1 at each vertex. 

Finally, for the more interesting snub honeycomb whose symbol consists of 
one ring linked to four others, G is [31'1'1'1]=/54 and its (Euclidean) funda- 
mental region is a 4-dimensional tetrahedral pyramid such as might be cut off 
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symmetrically from one corner of a 4-cube 74. When two such pyramids, one 
white and one black, are placed base-to-base, their two apices form an edge of 
the regular honeycomb {3, 4, 3, 3}; thus each vertex of 

s/ij 
lies on an edge of {3,4, 3, 3}, but not at the midpoint of the edge, and the 
awkardly tall symbol may reasonably be reduced to 

s{3,4, 3, 3}. 

The s{3,4,3}'s of s{3,4,3,3} are inscribed in the {3,4,3}'s of {3,4,3,3}, just as 
the icosahedra of s{3,4, 3} are inscribed in the octahedra of {3,4,3}. In fact, 
the vertices of 

divide the edges of 

according to the golden ratio. In the {3,4,3,3} given by permutations of 
(1,1,0,0) (mod2) [-11, p. 158], the typical edge (1,1,0,0)(1,0,1,0) is so divided 
at the point (1,-c-l,z-2,0). Thus the vertices of the snub honeycomb 
s {3,4, 3, 3} are given by the even permutations of (1, _+~01, _+~-2,0 ) (mod 2) 
or, since ~- 2 = 2 - ~, 

( _+ ~, i, _+ T- I, O) (mod 2). (2.76) 

Each vertex of this honeycomb is surrounded by 5 simplexes 274 = e4, one/34 

O �9 

�9 �9 

and 4 snub 24-cells 

Each c~,~ shares its 5 tetrahedral cells with one /34 and 4 s{3,4,3}'s. Each /34 
shares its 16 tetrahedral cells with 8 e4's and 8 s{3,4, 3}'s, arranged alternately. 
Each s{3,4,3} shares its 24 icosahedral cells with other s{3,4,3}'s, its 96 
tetrahedra 273 with ~4's, and its 24 tetrahedra H a with fl4's. 
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The circuits of solids and cells surrounding the three types of triangular 
face are as follows: 

{3,5}, s{3,4,3}, {3,5}, s{3,4,3}, {3,5}, s{3,4,3}; 

{3,5}, s{3,4,3}, %, e4, 0~3, s{3,4,3}; 

c%, c~, c%, /~4, ~3, s{3,4, 3}. 

The last case is particularly interesting because the angle between two adjacent 
e3's of s{3,4,3} is precisely the dihedral angle of {3,3,5}; we thus have a 
geometric 'explanation' for the curious fact that the dihedral angles of the 
three regular polytopes 

{3, 3, 3}, {3, 3, 4}, {3, 3, 5} 

[11, p. 293-1 add up to 2re. 
We conclude that the only uniform snub polytopes are 

{} s{} P {3,5}, 4 5 
s { p } = { p } ,  s 2 ' s 3 ' 3 ' 

hT, (=~3 when n=3,/~4 when n=4), s =s{3,4,3} 

(with p, 2p, 12, 24, 60, 2 "-1, 96 vertices), and the only uniform snub hon- 
eycombs are 

h r ,+  1 (=63 when n=2), {4} {6} 
s 4 '  s h{6,3}={3,6}, h({6,3}x{oe}), s{3,4,3,3}. 

Although the general construction uses a rotation group, only sf~ } (p 
M J 

=4,5,6) are chiral; all the rest are reflexible. For instance, among the re- 
flections R 1 . . . .  , R 5 that generate [3,4,3, 3], the first two are missing from the 
symmetry group of s{3,4, 3, 3}. For this infinite group, generated by R1 R z, R 3, 
R4, R 5, the appropriate symbol is, of course, I-3 § 4, 3, 3]. 

2.8. The Grand Antiprism 

In w we saw how to construct many uniform polytopes by applying 
Wythoffs construction to reflection groups. In w we found a few more by 
using rotation subgroups of some of the reflection groups. Is the list of uniform 
polytopes in 4 dimensions now complete? To answer this question, J.H. Con- 
way considered all the possible ways to arrange uniform polyhedra round one 
common vertex so that, round each edge, the sum of the dihedral angles is 
less than 2re. His conclusion was that the answer is No: the list is nearly 
complete but not quite ! There is just one more polytope. In his enthusiasm he 
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named it the grand antiprism. It has 100 vertices, 500 edges, 20 pentagons, 700 
triangles, 20 pentagonal antiprisms and 300 tetrahedra. The vertices, edges, 
triangles and tetrahedra occur among the 120 vertices, 720 edges, 1200 faces 
and 600 cells of the regular polytope {3, 3, 5}. Each vertex is surrounded by 2 
pentagonal antiprisms (with a common pentagonal face) and 12 tetrahedra 
(arranged like 12 of the 20 triangular faces of the icosahedron which is the 
vertex figure {3, 5} of the 600-cell {3, 3, 5}). In other words, the vertex figure of 
the grand antiprism is an irregular 14-hedron derived from the icosahedron by 
removing the 8 triangles that surround two adjacent vertices and inserting 
instead two trapezia with sides 1, 1, 1, z. 

We recall [11, pp. 247, 275, 2773 that the 600-cell has pairs of equatorial 
decagons, such as 

AoA6A12A18...As, , and DoD6D12D18...Ds,,, 

lying in completely orthogonal planes. Each decagon is surrounded by 150 
tetrahedra: 5 round each of the 10 edges and 10 round each of the 10 vertices. 
To derive the grand antiprism, we remove the 300 tetrahedra that surround 
one such pair of decagons and replace them by a pair of 'necklaces', N and N', 
each composed of 10 pentagonal antiprisms placed base to base. 

I 

A 

J 
I 

] 
4 
D 

Fig. 2.8A. One of the Antiprisms 

Let ABC . . .J  as in Fig. 2.8A, be one of the antiprisms in the necklace N. 
Let U be the centre of the 'top' pentagon ACEGI, and V the centre of the 
whole antiprism. Let Pl and P2 be two planes through the pentagonal axis UV 
and through the midpoints of CE and DE respectively. Let P3 be the plane 
midway between the two pentagons (that is, through the midpoints of AB, BC, 
CD, DE .... ), and P4 the plane of the pentagon ACEGI. Thus the 4 planes Pv 
form a kind of wedge. 

If we regard this construction as taking place in spherical 3-space (that is, 
on the circumsphere of the polytope), the axis UV is a great circle. The planes 
pl and P2, through UV, still form a dihedral angle ~z/10, but the planes P3 and 
P4, perpendicular to UV, instead of being parallel, intersect at an angle ~z/10 
along the polar great circle (lying in the completely orthogonal plane through 
the centre of the 3-sphere). The planes (that is, great spheres) Pl and P2, are 
orthogonal to this polar great circle and cut it in points U' and V' which play 
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the roles of U and V in one of the pentagonal antiprisms of the other necklace 
N'. Thus the 4 planes p~ are the faces UVU', UVV', VU'V', UU'V' of a 
spherical tetrahedron 

~10 -~ �9 ~- 

- -  the fundamental region for [10,2, 10]. As its faces are congruent isosceles 
triangles, UVV'U' is the kind of tetrahedron that is called a tetragonal dis- 
phenoid ('double wedge'). In terms of the reflections R~ in the planes p~, the 
polytope is symmetrical by the reflection R1, the half-turn R2R 3 (which 
reverses the edge DE) and the reflection R 4. These generate the group 
[10,2+,10] of order 200. But there is also the half-turn about the join of the 
midpoints of UU' and VV', which interchanges the two necklaces. Thus the 
complete symmetry group of the polytope is 

[[10, 2 +, 10]] ~ G'*' 4.1 o 

of order 400 (see (2.39)), in agreement with the fact that there are 100 vertices 
while the symmetry group of the vertex figure is the 4-group ~2 generated by 
R 1 and R 4. (This description of the symmetry group of the grand antiprism 
was kindly provided by Professor Norman W. Johnson.) 
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