Four polytope products:
Join, Fusil, Prism and Meet

Abstract: An n-polytope is defined recursively by (n-1)-polytope facets, 2 per ridge. A 1-polytope: 2
points, a segment body. A 2-polytope: polygon with vertices and edges, 2 edges/vertex. A 3-
polytope: polyhedron, polygonal faces, 2 faces/edge. Polytopes can be characterized by f-vectors,
like a p-gon's f-vector: (p,p), p vertices and edges. Product polytopes like prisms and dual
bipyramids known since Kepler. Self-dual pyramids, skew polytopes also intriguing product forms.
This talk presents 4 product operators: join, fusil, prism, meet (V, +, x, V), computing f-vectors via
vector products. E.g., cube's f-vector (8,12,6,1) from prism triple product of segments (2,1),
coefficients from characteristic polynomial (2+x)3.
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Absmace: There are four special operators on pefyopea: — join, fusil, prive, oid meet Joins create mpamid forms,
comrecting all elements, Fusils creqdes cross poiyfopes, alss connecting afl elements, bur excluding bodies. Prisms:
create Rymercuber ar Cartesian or rectangular products. Meets also creats Cartesian products, but pensrats shew
polyropes By removing bogy elements. This paper explora: lower dimensional examples af these aperators and how to
wark with them. The Fvectors for ail 4 gperatars can be penerated by products [fhe coefficients of palimomial
products. Detailed i-face elements are computed via product tebles and can be shown in Hazse dizgrams.

1 Introduction: Four Operators

In thiz paper we uze Morman Johnzon names [4] with jom, v, fusil (thombic
“gum™), +, prism {Cartesian or rectangular product], *. Johnson named fusil x sl +
from 2 thombic shaps, and it also contains the verb fuse as the element

polytopes can share the same centar. Fusils are given 2 + symbol bacansze k'N
vertex counts add, while prizm haz a % symbol becausa verhess multiply. ) A
Johnson didn’t mention specifically the final meat A, but join-meet are a

natural extension, reminding us of union and intersaction.

Weet

Fieure 1

A 2016 paper [3], dezenbed all 4 products and names our maest oparator as a topelogical product.

Fichard Klitzing [3] name the four operators. The jom operator 1z ¥4, called 2 pyramid product.
The fusil operator 1= ¥4, called a tegum product. The prism operator, 15 *o4. Finally, the meat
operator 15 represented az ¥ae, and called 2 honeyeomb product.

Figure 1 shows the join can be seen 2z 2 “dimensional hft” of the fusil (+), while prism and fo=al
are dualz, and meet 15 a skew dowm-rank construction from the prism.

The operatars can be expressed puraly abstractly, as orthogonal products of E-faces of each
polvtope. An j-alement polytope A product with a j-slement polyvtope B defines an i matrie of
product alements. The join and fuzil have joined slements, and the prism and mest have prism
elemants. These will be dezenbed in datailed examples with product tablez and Haszze diagrams.
Figue 2 o mple S JOn, Fusl Prom Moot
all 4 operators, jormng a pentagon N
and a point, fusing a pentagon and a AN
segment, prism of 2 pentagon and /ol
segment, and a meet of two
orthogonal pentagons, projected /
down from 4-dimensions. R\

{srv () {5}1{} s ={} {5} A {5}

Figure 2

1.1 Polytope Rank

An n-polvtops is zaid to have rank », bounded by (n-1)-faces, A polveon is rank 2, bounded by 1-
faraesz or edges, polyhedron rank 3, bounded by 2-faces.

The join operator adds cne dimension or rank, while meet subtracts cne rank.

*  Join: Eank(4 v B) = Rank{A) + Rank{B) + 1

¢  Fusil: Eank{4 + B) = Rank{4) + Rank{E)

¢  Prism: Eank(4 « B) = Rank{4) + Rank(B)

#  Mleet: Banki4 » B) =FRank(4) + Rank(B)} -1
1.2 Pohvtope f-vectors and products

A product polytope’s fvector can be computed like polynomizl products from its elements. Tha
polvnomial §° powers are mapped onto k-faces, with term coefficients as each fvactor count
zlamant.

The products can be seen in by extended fvectors. An fovector liste counts of b-faces, F=0.. n-1. A
f-vector 1s extended by a2 -1-face element (empty set, or nullitope) 25 count 1 for the jomn and fosil
operations. The join and prism operators also inchude the body as an n-face (body) a= 1.

A regular polvtope 1= uniguely defined by its £vector counts, whila other polytopes must includs a
list of k-face polytope typas for completaness.

Thesa extended f-vectors are written with a leading 1 (nullitope), or trailing 1 (body). We can use
tha operators as (v, +, %, M), or subscript versions used by Klitizimg (<1, %00, %0, <00)

* Jom vor ®1a: (LE1) Join product Prism product
®  Fusil +or x0: (L)
®  Prizm * or *ai: (£1)
*  Dleet Aor =ae (D)
Figure 3 (loft) shows a sguare prramid as a
joun of 2 square bazse and an offset pont.
The square baze has extended fvector
(1,4,4,1), and a point can be reprezented as f-vectors f-vectors
(L1). Thai1: product can be |:|:lm1pul:ed as Square (1,4,4,1)0 Square: (4,4,1) @
(I+dxsdx’ )l +x)=1+5x+Bx+xrx’. Point: (1,1) Segment: (2,1) |
Then coefficiants can be extracted as Join: (1,4,4,1)*(1,1) Prism: (4,4,1)*(2,1)
(1,5,8,5,1). A squara pyvramid has 3 vertices, =(1,5.8,5,1) ={8,12,6,1)
E edges, and 5 faces. Figure 3

Figure 3 {right) shows a square prism product. It doesn’t melude the leading nullitops 1.


https://www.bendwavy.org/polytile/ProductPolytopes3-A4.pdf

My story: Fudging pentagons
1975: Elementary school playground
Ice pudd|e polygons - Mystical pentagon!

AOOQ |

{3} {4} {5} {6}

)
-_— ’
“-a
"
JEPUESTS S w: - s =
- - - -
e - - T Y
S . — A
— A B .
e 3 S = e
= =
.%-m.r(- S - Pdans
ol : - - et
- - =
- -
\D - ‘-
—
* P - o b
.- R
4 4 . - » * >
. L - - -
- - i .

{ry 8 {9 {10}




1978 Christmas book

Rudy Rucker (1946) and Edwin Abbott (1808-1882)
(1977) Geometry, Relativity and the Fourth Dimension
based on (1884) Flatland: A Romance of Many Dimensions

Sl GEOMETRYRELATIVITY
] ANDTHE FOURTH
. DIMENSION

\
{
L

Rudolf viB. Rucker



https://en.wikipedia.org/wiki/Flatland

1980 Cosmos (Episode 10: The Edge of Forever)
Lower and higher dimensions
More flatland and shadows of 4t" dimension



https://www.youtube.com/watch?v=UnURElCzGc0
https://en.wikipedia.org/wiki/Cosmos:_A_Personal_Voyage#Episodes

Computer Animation

1984: 10t" grade geometry class
Apple I+ BASIC & assembly

Dodecahedron as 4 pentagons!




1986 High School wheel-throwing
1990 College ceramics — hand-building

Dodecahedra and more — solids and pinched slab




1990 Saint Cloud Mathematics conference
| met Father Magnus J. Wenninger 1919-2017

Monk of Saint John's Abbey Collegeville, Minnesota (1945)
Mathematics teacher at Saint Augustine’s College from 1946 to 1971
Polyhedron Models (1974) — 75 uniform star polyhedra, named by Norman Johnson

LN
oeé Polyhedron
MOdels MAGNUS J.WENNINGER



https://en.wikipedia.org/wiki/Magnus_Wenninger
https://web.archive.org/web/20170222111836/http:/www.saintjohnsabbey.org/news/obituary-fr-magnus-wenninger-osb/
https://www.amazon.com/Polyhedron-Models-Magnus-J-Wenninger/dp/0521098599/ref=asc_df_0521098599

Geometry Center
University of Minnesota (~1990-1998)

June 1991 two-week class (HS, undergrads, teachersl!)
Geometry and the Imagination

John H Conway, Peter Doyle, Jane Gilman, and Bill Thurston

John H. Conway Peter Doyle Jane Gilman Bill Thurston
(1937-2020) (1946-2012)


https://en.wikipedia.org/wiki/Geometry_Center
https://math.dartmouth.edu/~doyle/docs/gi/gi.pdf
https://en.wikipedia.org/wiki/John_Horton_Conway
https://math.dartmouth.edu/~doyle
https://en.wikipedia.org/wiki/Jane_Piore_Gilman
https://en.wikipedia.org/wiki/William_Thurston

(1997-1999) Delphi Pascal

Polyhedron and 4-polytope building by vertex figure reflection

& Tescelations-3 (Reflective Uniform Polyhedra and tilings) _ o % ﬂ' Tesselations-4 (Reflective Uniform Polychora and honeycombs) — ] x
Eile View QOptions Help File
ERRCY S 2RI S S 1:[FEN] Bcall 13,33} ~

Z[TES] S-cell 44,33
A[HEX] 16-cell 3.3 4}
£(IC0] 24-c8ll £2,4.3

10[515HI] Small stellated 120-cell {5/2,5,3}
11:[GAGHI] Great grand 120-cell {5.5/2,3)
12:[BISHI] Great stellated 120-cell {5/2.3 5}
13:[BASHI] Grand stellated 120-cell {5/2,5,5/2}
14:[GOFIX] Great icosahedral 120-cell §3.5/2 5
15:[GAx] Grand BO0-cell {3.3.5/2)
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2003 Hyperbolic tilings — “Impossible” polyhedra

Hyperbolic Planar Tesselations

by Don Hatch
Here are pictures of some regular tesselations of the hyperbolic plane.

Each tesselation is represented by a Schlafli symbol of the form {p.q}. which means that q regular p-gons surround each vertex. There exists a hyperbolic tesselation {p.q} for
every p.q such that (p-2)*(q-2) > 4.

Each tesselation is shown in various stages of truncation.

The dual of each tesselation or truncated tesselation is shown in blue. At the final stage of truncation (4.0) the object becomes its dual so those images are identical to the
ontruncated images except that the colors are reversed.

You may want to make your browser window wide so you can see them all at once. Click on an image to see a bigger version of it.

Truncation: 0 5 1 15 2 2.5 3 35 4 (dual)

3.7

5.4}

{7.3}



http://www.plunk.org/~hatch/HyperbolicTesselations/

Wikipedia (2004-present)

Uniform polyhedra and 4-polytopes, hyperbolic tilings, honeycombs

Uniform polyhedron

From Wikipedia, the free encyclopedia

This articie includes a st of general references, but it lacks sutficient corresponding inline
ions Please help to improve this article by infroducing more precise citations. (Colober 2011)

(earn how and when t remove ths template message)

In geometry, a uniform polyhedron has requiar polygons as faces and is vertex-iransitive (ie . there is an isometry
mapping any vertex onto any other) It follows that all vertices are congruent

Uniform polyhedra may be requiar (if aiso face- and edge-lransitive), quasi-requiar (if also edge-ransitive but not
tace-transiive), or semirequiar (f neither edge- nor face-transitve). The faces and vertices need not be Lonuex, 50
many of the unitorm polyhedra are also Star polyhedra

There are two infinite classes of uniform polyhedra, together with 75 other polyhedra

Platonic solid: a
.l Blalomc soid
Infinite classes: Tetrahedron

« prisims

« anliprisms
» Convex exceplional

« 5 Platonic solids: regular convex polyhedra,

« 13 Archimedean solids 2 quasiregular and 11 semireguiar convex polyhedra
« Star (nonconvex) exceptional

» 4 Kepler-Poinsot polyhedra’ regular nonconvex polynedra,

» 53 UGN StAr POVNENTA’ 14 QUASICEQUIAT And 39 Semireguiar
Unifgrm star 8
eolmedron Snuy
godscadodecanearon

Hence 5+ 13 +4 453 =75,

There are also many degenerate uniform polyhedra with pairs of edges that comcide. including one found by John

Johnson | Parent | Truncated Rectified snub
name (tr. dual) (dual) (cantitruncated)
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Uniform 4-polytope

Article  Talk

From Wikipedia, the free encyclopedia

{Redirected from Uniform polychora)

In geometry, a uniform 4-polytope (or uniform polychoron)!'l is a 4-dimensional polytope which
is vertex-transitive and whose cells are uniform polyhedra, and faces are regular polygons.

There are 47 non-prismatic convex uniform 4-polytopes. There are two infinite sets of convex

prismatic forms, along with 17 cases arising as prisms of the convex uniform polyhedra. There are
also an unknown number of non-convex star forms

History of discovery [edt]

= Convex Regular polytopes:
= 1852 Ludwig Schizfli proved in his manuscript Theorie der vielfachen Kontinuitaf that there
are exactly & regular polytopes in 4 dimensicns and only 3 in 5 or more dimensions
« Regular star 4-polytopes (star polyhedron cells andior vertex figures)
« 1852 Ludwig Schlafli also found 4 of the 10 regular star 4-polytopes, discounting 6 with
cells or vertex figures {5:‘2 5} and {5.512}
= 1883: Edmund Hess completed the list of 10 of the nonconvex regular 4-polytopes, in his
book (in German) Einleitung in die Lehre von der Kugeiteilung mit besonderer
Beriicksichtigung threr Anwendung auf die Theorie der Gleichfiachigen und der
gleicheckigen Polyeder [1]2
« Convex semiregular polytopes: (Various definitions before Coxeter's uniform category)

tetrahedral cells visible

= 1900: Thorold Gosset enumerated the list of nonprismatic semiregular convex polytopes
with regular cells (Platonic solids) in his publication On the Regular and Semi-Regular
Figures in Space of n Dimensions. In four dimensions, this gives the rectified 5-cell, the
rectified 600-cell, and the snub 24-cell 2

1910: Alicia Boole Stott, in her publication Geometncal deduction of semireguiar from
regular polytopes and space fillings, expanded the definition by also allowing Archimedean
solid and prism cells. This construction enumerated 45 semiregular 4-polytopes,
corresponding to the nonprismatic forms listed below. The snub 24-cell and grand antiprism

were missing from her list.*]
1911: Pieter Hendrik Schoute published Analytic treatment of the polytopes regularly
derived from the reguiar polytopes, followed Boole-Stott's notations, enumerating the
convex uniform polytopes by symmetry based on 5-cell, 8-celli16-cell, and 24-cell
« 1912 E. L Elte independently expanded on Gosset's list with the publication The
Semiregular Polytopes of the Hyperspaces, polytopes with one or two types of semiregular
facets.¥]
« Convex uniform polytopes:

edges are drawn

Schiegel diagram for the fruncated 120-cell with

Hp, 4 languages v

Read Edit View history Tools v

=]

Orthographic projection of the fruncated 120-cell in &7
the H; Coxeler plane (D symmetry). Only vertices and

Uniform honeycombs in hyperbolic space A Add languages v
Articie  Talk Read Edit \View history Tools v

From Wikipedia, the free encyciopedia

ctry, a uniform honeycomb in hyperbolic space is a uniform tesseliation of uniform
pa

Unsolved problem in mathematics.

In 3-dimensional hyperbolic there are nine Coxeter group families of compact

fe s, and represented by permutations of

x uniform

ycombs, generated as

#) Find the compiete set of hyperbolic

rings of the Caxeter diagrams for each family uniform honeycombs

(more unsalved problems in mathematics)

Hyperbolic uniform honeycomb families ea

Honeycombs are divided between compact and paracompact forms defined by
Coxeter groups, the first category only including finite cells and vertex figures
(finite subgroups), and the second includes affine subgroups

Compact uniform honeycomb families [cai]

The nine compact Coxeter groups are listed here with their Co ze
i o ordes of e Telative volirass of el landasnental siics Order-4 dodecahedral honeycomb | Order-5 dodecahedral honeycomb
($34) 39)

These 9 families generate a total of 76 unique uniform honeycombs. The full list
of hyperbolic uniform honeycombs has not been proven and an unknown
number of non-Wythoffian forms exist Two known examples are cited with the
{3,5.3) family below. Only two families are related as a mirror-removal halving
53— [534,1%)

Icosahedral honeycomb

Order-5 cubic honeycomb

[43.5) (3.5.3)

Poincaré ball model projections

Compact uniform honeycomb families | e

The nine compact Coxeter groups are listed here with their Coxeter diagrams, ") in order of the relative volumes of their fundamental simplex
domains 2

These 9 families generate a total of 76 unique uniform honeycombs. The full kst of hyperbolic uniform honeycombs has not been proven and an
unknown number of non-Wythoffian forms exist. Two known examples are cted with the {3.5,3) family below Only two famiies are related as a
mirror-removal haiving: [5.3"1] — [5.3.4,1].

Fundamental c =
Indexed  simplex | _ H :" ““":: = ﬁ;:mu Honeycombs.
Vonmett | 7™ subgroup | diagram
= 53411
Wi 00358050533 BHy |[534) |10 esep |16 foms, 2 reguiar
Hy 00300502856 |J5  [[353] |[353) eoges | 9forms, 1 reguiar
Hy 00717701267 | DHy (53" | [5.3"' =y 11 forms (7 overiap with [5.3.4] family. 4 are unique)

Hy 00857701820 | AB; |((4333) [(4333)]° |43 9 forms
Hs 00033255305 Ky 1535 535" egeege | O torms, 1 regular
Hg 02052887885 | AH, |[(6333) (5333 {1 9 forms.
Hy 02222287320 BB; | [(43)F] |[(43°43%)] oI 6 forms.
Hy 0.3586534401 | BHy  |[(3435)] | [(3435)]° I+ 9 forms.

Hg 05021308905 | HH; | (5.3 | (5302 Lo 6 forms.


https://en.wikipedia.org/wiki/Uniform_polyhedron
https://en.wikipedia.org/wiki/Uniform_4-polytope
https://en.wikipedia.org/wiki/Uniform_tilings_in_hyperbolic_plane
https://en.wikipedia.org/wiki/Uniform_honeycombs_in_hyperbolic_space

Norman W. Johnson 1930-2017

1966 PhD: The Theory of Uniform Polytopes and Honeycombs, under H. S. M. Coxeter

1966: Enumerated, named 92 Convex polyhedra with regular races “Johnson solids”
1998-2017 “Polylist” private forum with George Olshevsky, Jonathan Bowers, John H. Conway,
Magnus Wenninger, Richard Klitzing, Wendy Kreiger.

2018: “Geometries and Transformations”, portion of unpublished “Uniform polytopes”

Geometries and
Transformations

Norman W. Johnson



https://en.wikipedia.org/wiki/Norman_Johnson_(mathematician)
https://en.wikipedia.org/wiki/Johnson_solid
https://web.archive.org/web/19981206035238/http:/members.aol.com/Polycell/uniform.html
http://www.polytope.net/hedrondude/polychora.htm
https://bendwavy.org/klitzing/home.htm
https://os2fan2.com/gloss
http://hi.gher.space/forum/viewtopic.php?f=25&t=1851

What is a polytope?
A connection of flat geometric elements.
An n-polytope is bounded by (n-1)-polytopes called facets (or sides).

A regular polytope has all identical vertices, edges, faces, etc.
The interior of a polytope is called the body.

-1D oD 1D 2D 3D 4D
-1-polytope 0-polytope 1-polytope 2-polytope 3-polytope 4-polytope
nullitope point dion polygon polyhedron polychoron
O
O
Nothing Point Segment Pentagon Dodecahedron

0 () {} {5} {5,3} {5,3,3}



Schlafli symbol (regular polytopes)

Swiss mathematician Ludwig Schlafli (1814-18995)

* A polygon or p-gon has p vertices, p edges, 2 edges/vertex.

* A convex regular n-gon has symbol {p}, regular star {p/q}
* Each vertex has 2 edges (manifold condition

AOOCOOOO

Sy {4y 8 {8y {7y {8 {9 ({10}

R OO ¥k

{672} 712y {713y {8/3} (9/2} {9/4} {10/3)


https://en.wikipedia.org/wiki/Schl%C3%A4fli_symbol
https://en.wikipedia.org/wiki/Ludwig_Schl%C3%A4fli

5 regular (Platonic) polyhedra {p, g}
4 regular star (Kepler-Poinsot) polyhedra {p, 5/2}, {5/2, p}

{p} faces and g faces around each vertex
Each edge has 2 faces (manifold condition)

Regular convex polyhedra (Platonic solids) Regular star polyhedra (Kepler—Poinsot)
Tetrahedron Cube Octahedron Dodecahedron Icosahedron Great Small stellated Great Great stellated
(hexahedron) dodecahedron dodecahedron icosahedron dodecahedron

VHe00 %k

(33] {43} (3.4} {53} 3.5 | {552} (5/2,5) (3,52} {5123}

AT & %5




Six regular 4-polytopes: {p, g, r}

{p, g} cells, r facets around each edge

Each face has 2 cells (manifold condition)
5-cell Tesseract 16-cell 24-cell 120-cell 600-cell

(cell-centered) (cell-centered) (cell-centered) (cell-centered) (cell-centered) (vertex-centered)

T »

{3,3,3} {4,3,3} {3,3,4} {3.4,3} {5,3,3} {3,3,5}




Four Polytope Products

Gleason, I.; Hubard, I., Products of abstract polytopes, 11 Mar 2016
https://arxiv.org/abs/1603.03585

Join Fusil Prism Meet
pyramid bipyramid Skew polytope

{5} v () {8} +{} {8} x{} {5} A {5}



https://arxiv.org/abs/1603.03585

4 regular polytope families in n-dimensions
(Each constructed by one of 4 product operators)

Operator | Recursive Schlafli Polytope

Vertices
Product Symbol family
Notation
Join (n+1) - () {31} n-simplex n+1
Fusil n{} {3n-2 4} n-cross polytope 2n
Prism {} {4,3n-2} n-prism, n-cube 2"
Meet {p}n) {4,372,4 | p} Regular skew p"

{oo}n) {4,372 4} n-cubic honeycomb

8



https://en.wikipedia.org/wiki/Simplex
https://en.wikipedia.org/wiki/Cross-polytope
https://en.wikipedia.org/wiki/Hypercube
https://en.wikipedia.org/wiki/Hypercubic_honeycomb

1-simplex

Regular n-simplex family: Join (n+1) - () Pascal’s triangle

Triangle Tetrahedron 5-cell )
2-simplex 3-simplex 4-simplex S-simplex 6-simplex

Join (n+1) vertices: extended f-vectors (1 nullitope, n+1 vertices, 1 body) °‘

O-simplex: (1,1) — point

1-simplex: (1,1)? = (1,2,1) — segment
2-simplex: (1,1)3 = (1,3,3,1) - triangle
3-simplex: (1,1)* = (1,4,6,4,1) - tetrahedron
4-simplex: (1,1)> = (1,5,10,10,5,1) — 5-cell
5-simplex: (1,1)® = (1,6,15,20,15,6,1)
6-simplex: (1,1)” =(1,7,21,35,35,21,7,1)
7-simplex: (1,1)% = (1,8,28,56,70,56,28,8,1)
8-simplex: (1,1)° = (1,9,36,74,126,74,36,9,1)

Binomial theorem @ +y)" = (g)m“yf’ + (“) Lyt o+ (n)x”_2y2 +oet ( " )mly”_l + (n)xoyn



https://en.wikipedia.org/wiki/Simplex
https://en.wikipedia.org/wiki/Pascal%27s_triangle
https://en.wikipedia.org/wiki/Binomial_theorem

Regular n-fusil family: n { }
(Cross polytope, orthoplex)
Direct sum of segments
2n vertices, 2n(n-1) edges
1-fusil 2-fusil 3-fusil 4-fusil S5-fusil 6-fusil

S / <

n-fusil: extended f-vector: (1 nullitope, 2n vertices) 16-cell
1-fusil: {}:(1,2) *** Segment
2-fusil: 2{}: (1,2)*=(1,4,4) *** Square
3-fusil: 3{}: (1,2)3=(1,6,12,8) *** Octahedron
4-fusil: 4{}: (1,2)*= (1,8,24,32,16) *** 16-cell
( (
( (

5-fusil: 5{ } : (1,2)5 = (1,10,40,80,80,32)
6-fusil: 6{} : (1,2)6 = (1,12,60,160,240,192,64)

Binomial Theorem (z +y)" = (E) "y’ + (T) "yt 4 (Z) "2y 4


https://en.wikipedia.org/wiki/Cross_polytope

Regular n-prism family: { }”

Segment Square Cube Tesseract
1-cube 2-cube 3-cube 4-cube 5-cube

(hypercube, n-cube, n-orthotope)
Cartesian product of segments

RAANSVANN

<

N

QD
N
o7
0
V'.\‘

@
Vv
< D
R4
N
s\

n-prism, { }":

1-prism{} :

2-prism { }*:
3-prism{ }3:
4-prism { }*:
5-prism { }>:
6-prism { }°:
7-prism{} :
8-prism { ¥ :

extended f-vectors: (2" vertices, 1 body)

(2,1) *¥* Segment

(2,1)>=(4,4,1) *** Square, {4}

(2,1)3 = (8,12,6,1) *** Cube, {4,3}
(2,1)*=(16,32,24,8,1) *** Tesseract, {4,3,3}

(2,1)°> =(32,80,80,40,10,1) **%x{4,3,3,3}

(2,1)6 = (64,192,240,160,60,12,1) *x% {4 3 3 3 3}

(2,1)7 =(128,448,672,570,280,84,14,1) *** {433 3,3,3}

(2,1)8 = (256,1024,1792,1792,1120,448,112,16,1) *** {4,3,3,3,3,3,3}

Tesseract



https://en.wikipedia.org/wiki/Hypercube
https://en.wikipedia.org/wiki/Tesseract

Regular n-meet: {p}\")

Skew polytopes, vertices and edges as {p}" n-prism
(3@ {3} {34 (3}

3}

o 2

Example: {3}, triangular n-meets: (3" vertices on an n-torus surface of a n-sphere)

1-meet {3}1): (3,3)* = 3(1,1) = (3,3) *** Triangle

2-meet {3}12): (3,3)2=3%(1,2,1) = (9,18,19) *** {44 | 3}, partial square tiling, 2-torus , 3x3 square net

3-meet {3}13): (3,3)3 = 33(1,3,3,1) = (27,81,81,27) **% {4,3,4 | 3}, partial cubic honeycomb, 3-torus , 3x3x3 cubic net
4-meet {3}4): (3,3)* = 34(1,4,6,4,1) =(81,324,486,324,81) *** {4,3,3,4 | 3}, partial tesseratic honeycomb, 4-torus, 3x3x3x3 net
5-meet {3}): (3,3)> = 35(1,5,10,10,5,1) = (243,1215,2430,2430,1215,243) **%{4.3,3,3,4 | 3}, 5-torus

6-meet {3}(6): (3,3)¢ = 35(1,6,15,20,15,6,1) = (729,4374,10935,14580,10935,4374,729) *** {4,3,3,3,3,4 | 3}, 6-torus

7-meet {3}\"): (3,3)” =37(1,7,21,35,35,21,7,1) = (2187,15309,45927,76545,76545,45927,15309,2187)

8-meet {3}®): (3,3)8 = 38(1,8,28,56,70,56,28,8,1) = (6561,52488,183708,367416,459270,367416,183708,52488,6561)



https://en.wikipedia.org/wiki/Square_tiling
https://en.wikipedia.org/wiki/Torus#Flat_torus
https://en.wikipedia.org/wiki/Cubic_honeycomb
https://en.wikipedia.org/wiki/3-torus
https://en.wikipedia.org/wiki/Tesseractic_honeycomb

The join operator (V)
Join attaches two center-offset orthogonal polytopes.
If one polytope is a point, it is pyramid.
A {p} Vv () pyramid has p+1 vertices, 2p edges, and p+1 faces. (self-dual)
Element counts can be given an f-vector (v,e,f) as (p+1,2p,p+1).

Polygonal pyramids, {p} Vv ()

Regular Equilateral Regular base, isosceles triangle sides

I (Johnson J1, J2)

Giv() [ {43v() () [{6xv()  {7xv()  {8}v()

(4.6,4) (3,8,5) (6,10,6) (7,12,7) (8,14,38) (9,16,9)




Polygonal fusils and prisms (duals)

W) +1}and {p} X {}

A polygonal fusil is the direct sum of a polygon and a segment.
A polygonal prism is a Cartesian product of a polygon and a segment.
Fusil: f-vector: (1,p,p0)*(1,2)=(1,p+2,3p,2p)
Prism: f-vector: (p,p,1)*(2,1)=(2p,3p,2+p, 1)

{31} {43+ } {5H+{} {63+{} {7} {8}+{} {93+ } {10}+{}
(1,3,37(1,2) (1,4,4)(1,2) (1,5,5)(1,2) (1,6,6)(1,2) (1,7,7)(1,2) (1,8,8)(1,2) (1,9,9)(1,2) (1,10,10)%(1,2)
(1,5,9,6) (1,6,12,8) (1,7,15,10) (1,8,18,12) (1,9,21,14) (1,10,24,16) (1,11,27,18) (1,12,30,20)

{3}x{} {4}x{} {53x{} {6}x{} {7}x{} {8}x{} {93x{} {103={}

(3,3,1)4(2,1) (4.4,1)%(2,1) (5,5,1)*(2,1) (6,6,1)"(2,1) (7,7,1)(2,1) (8,8,1)(2,1) (9,9,1)(2,1) (10,10,1)%(2,1)
=(6,9,5) =(8,12,6) =(10,15,7) =(12,18,8) =(14,21,9) =(16,24,10) =(18,27,11) =(20,30,12)



2-torus — Meet of 2 p-gon
Regular skew polyhedron in 4D, {p}A{

Example: /
{20} A {20} = {20}{2)

(20,20)*(20,20)=(400,800,400)
400 vertices, 800 edges
and 400 square faces

Coxeter name: {4,4 | 20}
A square tiling {4,4}
repeating every 20 squares



https://en.wikipedia.org/wiki/Torus#Flat_torus

Duoprisms and duomeets
Net( A A B) = Net(A) x Net(B)

{3}x{3} {4}x{4} {5}x{5} {6}x{6} {7}x{7} {8}x{8}

(3,3,1)*(3,3,1) (4,4,1)*(4,4,1) (5,5,1)*(5,5,1) (6,6,1)*(6,6,1) (7.7,0)*(7,7,1) (8,8,1)*(8,8,1)

=(9,18,15,6,1) =(16,32,24,8,1) =(25,50,35,10,1) =(36,72,48,12,1) =(49,98,63,14,1) =(64,128,80,16,1)
{337 {3} {4}n{4} {5}1{5} {631 {6} {7}n{7} {8}A{8}
(3,3)(3,3) (4,4)*(4,4) (5,5)*(5,5) (6,6)*(6,6) (7,7)*(7,7) (8,8)*(8,8)

=(9,18,9) =(16,32,16) =(25,50,25) =(36,72,36) =(49,98,49) =(64,128,64)



Magic math of extended f-vectors explained

Join product Prism product
An f-vector counts elements.

Example:cube (8,12,6), 8 vertices, 12 edges, 6 faces.
An extended f-vector can include 1 (nullitope) and 1 body:
eJoin V (1,f,1) -segment (1,2,1)- 1 null. 2 vertices, 1 body

eFusil + (1,f) - segment (1,2) - 1 null., 2 vertices
ePrism x  (f,1) -segment (2,1) -2 vertices, 1 body
eMecet A (f) - segment (2) - 2 vertices f.vectors f-vectors
. . S : (4,41
Square pyramid: square (1,4,4,1) and point (1,1) ﬁg;‘natmj{;‘f’”. Sg;ﬁ{;t‘: (2,1;7
. Join: (1,4,4,1)*(1,1) Prism: (4,4,1)*(2,1)
Square prism: square (4,4,1) and segment (2,1) 158 54) ~(8.12,6,1)

Products work like polynomials:
Pyramid: (1+4x+4x2+x3)(1+x) = 1+5x+8x2+5x3+x* =2 (1,5,8,5,1)
Prism: (4+4x+x?)(2+x) = 8+12x+6x%+x3 - (8,12,6,1)



Product tables and Hass diagrams
Hasse Diagram Extended Symmetry Grouped

f"’flcmf Hasse Diagram
Body|(abede
: {4}v()
Wl 5 o %
Faces (abc) (abd) (ace) (ade bede
= 1 {4}vo {v()
Edges /A~ A& b }M \ 1 .
ab ac ad ae ¢ ce de
e 8 {}V¢4/()V()4
Vertices{{a)| @) @ @ (|, 5 Ove], [ovOl.
N \
Nullitopel @ 1 1 ovVo 1
ke Square . Join Product Table
pyramid X 1{4}(1 {4}vo|1 {4}v()
g 4 {}|4 {}vo |4 {}v()
34014 Ovola (OU)
b c w1 o[1_ove|1l ov()
1 o1 ()

d e Point ()



Hexagonal pyramid, {6} Vv ()

{6;v()

Characteristic polynomial

Hasse diagram

7\
<

Join product table

1 {6}V

1{6}v( )./

Extended f-vector to polynomial:

base: (1,6,6,1) point: (1,1)
(146x+6x2 +x3 )(1+x) = 1+7x+12x% +7x3 +x4

6 {}v0

6{ V()

6 ()v@

1 ovo

6 V()

T 0

‘@=nullitope , BVG = @, BVA = A

()V() = segment,{ }
{ }V() = isosceles triangle

Join (1,7,12,7,1) 1 nullitope, 7 vertices,12 edges, 7 faces,1 body.




Tetragonal disphenoid — join 2 segments

Fusil similar, but “holes” at segments — creates skew rhombus!

Join product table

Hasse Diagram Fusil product table Hasse Diagram
1{}y1{kvo|2 {}v()[1{}v{}
20 [2(vela (VO [20vY] < [, 2() 2()ve}4 V() o
101 ové|2 ov()|1 oV{} ' o1 0voi2 ov() [HOv()
1 0|2 (O]1 {} >}V(<2A9V{Q 1 0|2 () RN
Tetragonal Disphenoid [{3ve] [0vO)], I[9vE}], Skeﬁﬂ!a@@ombus ‘12v()|, -[()VO 5
N N/
[ov(), -[Ove], ovo|

oVl {}: f-vector (1,2)

(1,2)> =(1,4,4)
4 vertices, 4 edqges

{}: f-vector (1,2,1)
(1,2,1)?2=(1,4,6,4,1)

4 vertices, 6 edges, and 4 faces




Joins, semi-joins and fusils

A fusil connects elements of A and B, excluding A and B

Join AvB (1,1,,1)*(1,5,1)

Semi-joins A+ B (1,f,,1)*(1,f5) ™" Exclude body B
A4B (1,f,)*(1,f5,1) ™ Exclude body A

Fusil A+B (1,1,)%(1,1)

(AFB)U (A4 B)=(Av B)

Join is union of two semi-joins
(AFB)N(A-4B)=(A+B)

Fusil is skew intersection

Join segments

Semi-joins

Fusil segments
Tetrahedron Half tetrahedron skew S(Tll:ll't‘ A v B
A-B| [AdB
A+B
)
Vi LU i Lt
(1,2,1)*(1,2,1) % * *
~(1.4,6,4,1) Gl 00 (1,2)*(1,2,1) (L.Y)*(1.2)

=(1,4,5,2) =(1,4,5,2) = (1,4,4)



Prism and meet products — pentagon and segment
Meet product similar but “holes” at element bodies

{5}A{ } has 10 vertices, 10 edges, but disconnected?!

Prism product table

} 2 {83x()|1{5}x{}

H10 {3x()]S {}*{}

Y10 ()x()[S5 ()x{}
2 O {4

Pentagonal Prism

R

aup

|-

Q5I*()| o H{I{}5

Hasse Diagram

= [(81*{ }| 4

I
OO 10X,

«10)*0) 10

f-vectors:

Pentagon: (5,5,1)

Segment: (2,1)

Prism: (5,5,1)*(2,1)
=(10,10+5,2+5,1)
=(10,15,7,1)

Meet product table
S {}10{}x*()
S ()10 ()*()

2 ()

=

Hasse Diagram

AN
[0
AN 10

*10)*0) 10

f-vectors:
Pentagon: (5,5)
Segment (2)
Meet: (5,5)*(2)
=(10,10)




Prisms, semi-prisms, and meets

A meet is Cartesian product of A and B, excluding A and B

Prism AxB (f,,1)"(f3,1)

Semi-prisms Ax B (f,,1)*(fz) ™" Exclude body B
A< B (fy)*(fz,1) ™ Exclude body A

Meet AAB (f))*(fg)

(AXB)U (A <xB)=(AxB) Prism is union of two semi-prisms
(AXB)N(A<xB)=(AAB) Meetis skew intersection

Triangle-segment prism Semi-prisms Triangle-segment meet

Triangular prism Partial triangular prisms Skew hexagon

> wm

{3} *x{} {3y «<{} &¥x{} Girl}

(3,3,1)%(2,1) (3,3)%(2,1) (3,3,1)"(2) (3,3)"(2)
=(6,9,5,1) = (6,9,3) = (6,6,2) = (6,6)



Summary of polytope operators

Join AvB | ‘ceml Dual relations
f-vector * Q)VA=A Join: *(A V B) - (*A) \Vj (*B)
vector (1,A1)*(1,8,1)
_ oe—— Fusil: *(A + B) = (*A) x (*B)
A-1B Semijoins Ar-B Prism: *(A x B) = (*A) + (*B)
(1,A)*(1,B,1) (1,A,1)*(1,B)| [Mmeet: *(A AB) = (*A) A (*B)
\ —— g

Fusil A+B Prism AxB| /dentity

Union: (A+B) U (A4 B)=(AVB) A E/ \A B
nion: (A - 4B)=(Av A . N
Intersection: ArB)N (A4 B)=(A+B) (A)*(B 1) Semlpnsms (A 1)*(8)

Union: (A X B) U (A < B)
Intersection: (A x B) N (A < B)

(A x B) — e
(A A B) Meet AAB

(A)"(B)




Polytope names:

eJoin
o Point
o Segment
o Polygon+
oFusil
o Segment
o Polygon+
ePrism
o Segment
o Polygon+
eMeet
o Segment
o Polygon+

pyramid
wedge
duo-wedge

fusil
duo-fusilA + B

prism
duo-prism

meet
duo-meet

Names and symbols

AV ()
AV{}
AVB

A+{}
Ax{}
AXB

AALY
AAB

Higher product tuples: (Latin prefixes as n-tuples)

eDouble duo- {wedge, fusil, prism, meet}
oTriple tri- {wedge, fusil, prism, meet}
eQuadruple quadri- {wedge, fusil, prism, meet}
eQuintuple quinti- {wedge, fusil, prism, meet}
eSextuple sexti- {wedge, fusil, prism, meet}
eSeptuple septi- {wedge, fusil, prism, meet}
oOctuple octi- {wedge, fusil, prism, meet}
en-tuple n- {wedge, fusil, prism, meet}

Recursive power notations:

eJoin
eFusil
oPrism
eMeet

n-A
nA
An
A



Triple prisms and meets (3-torus)
{4}x{4}x{4} = {4} and {4}n{4}\{4} ={4}®)

{4}x{4}x{4} tri-prism product table

{4}n{4}1{4} tri-meet product table

1{4}[16 {4}x( )x{4}[16 {4}x{ }x{4}| 4 {4}x{a}x{4}] 4{ }|64{ }x( )x{ }|64 { }*x{ }x{ }
4{ }[64{ }x( )x{4}[64 { }x{ }x{4}[16 { }x{a}x{4}| 4 () (64 ( )x( )x{ } 64 ( )x{ }*{ }
4( )64 ()x()x{4}[64 ( )x{ }x{4} |16 ( )x{4}x{4} 4x4  ()x{ }4x4  { }x{ }
At Opidhad P11 WP TTeat (x84 { P <0)
4()[64 ()x()x()[64 ()= I*()
1{4}[16 {4}x( )x{ }| 16 {4}x{ }x{ }| 4 {4}x{4}*{ } 4x4  ()x( )l4x4 [ }x( )
40364 { Ix()x{ }[64 { Ix{ Ix{ }|[ 16 { }x{4}x{ } .
4() 64 ()x(O)={ 364 ()x{ ¥{ 3] 16 ()x{4r={ } Hasse Diagram
Ax4  ()x{ Yaxd  { }x{ }1x4  {4}x{ } {4}/\{4‘1}/\{4}1
{3x{}*{}g4
1{4}| 16 {43x( )x( )| 16 {4}x{ }x( )| 4 {4}x{4}x( ) i
A{}64{ Ix()x( )64 { P{ }x()[16 { Ix{a}x( )| [{I*O)*{}k4 [()*{}*{ }$4{}x{ ()44
4()[64 ()x()x()[64 ()x{ Ix()]16 ()x{43x() I [ |
4x4  ()x( )d4x4  { Ix( )1x4  {4}x( ) OxOrx{3, [0 )é4 ()%{ 3x( )é 4
f-vector: (4,4,1)° = (64,192,240,160,60,12,1) '
()x()%() |64

4x4x4 cubic net

f-vectors:

Square: (4,4)

Tri-meet: (4,4)% = 43(1,1)3
= 43(1,3,3,1)
=(64,192,192,64)



https://en.wikipedia.org/wiki/3-torus

Cuboctahedron-pentagon prism

&=

Hasse diagram

r{4,3}x{5}

4,3} (1310} [141%{3}
A 2\
{4,3p<()| By [14r<{) [13x{5)
BrxO)| [4x0)] [y [O*15)
{0 (O3>
\ /

(Ox(0)

5-dimensional prism

Prism product table

1 1{4,3} S {431x() | 5 r{43}x{}]| 1 r{4,3}x{5}
8 3y 40 {3x()[ 40 {3px{}] 8 {3}x{5}]
6 {4r] 30 {4ix()| 30 {4)x{}] 6 {4)x{5)
24 {} 120 (}x()[120  {x{}]24 {}*x{5}
12 ()60  Ox()]60  Ox{}[12 ()x45)

) ()] 5 [} 1 {5}

F-vector product

(12,24,6+8,1)*(5,5,1)

=(60, 60+120, 40+30+120+12, 5+40+30+24, 5+8+6,1)
=(60,180,202,99,19,1)



Cuboctahedron-pentagon meet

@

Hasse diagram

r{4,3}A{5}

/

N\

Prism product table

Skew 4-polytope in 5-dimensions

B}

“rx{}

8 {3} 40 8ix()] 40  {3px{}
6 {4y] 30 4x()] 30  {4px{}
24 {}y 1120  {}x()|120  {}x{}
12 ()60 OxOf60  ()x{}

5 ()] 9 {}

3r*()

“4r<()

{}lx{}

1x()

Ox{}

\

/

(x0)

F-vector product
(12,24,6+8)*(5,5)
=(60, 120+60, 40+30+120, 40+30)
=(60,180,190,70)

Net(r{4,3}A{5})
= Net(r{4,3}) x Net({5})

z

L,

I

Cuboctahedron-pentagon meet net

x%

(VAW



Conclusion
Polygons, polyhedra, polytopes

A kid’s intuitive playground
* Solid geometry you can build! Galileo Galilei

* Elements you can counts!
e Patterns to discover!

[The universe] cannot be read until we have
learnt the language and become familiar with
the characters in which it is written.

It is written in mathematical language, and the

A doorway to:

* Discrete geometry letters are triangles, circles and other

 Symmetry and Coxeter groups | geometrical figures, without which means it is

* Topology humanly impossible to comprehend a single
word.

* Combinatorics :
* Abstract geometry ~ Galileo Galilei (1564-1642)

* Group theory


https://maa.org/press/periodicals/convergence/quotations/galilei-galileo-1564-1642-1
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