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Preface. 

The regular polytopes in two and three dimensions (polygons and polyhedra) and the 

"Archimedean solids " have been known since ancient times. To these, KEPLER and 

POINSOTadded the regular star-polyhedra. 


About the middle of last century, L. SCHLAFLI*discovered the (convex) regular 
polytopes in more dimensions. As he was ignorant of two of the four KEPLER-POINSOT 
polyhedra, his enumeration of the analogous star-polytopes in four dimensions remained 
to  be completed by E. HESS.? 

Recently, D. M. Y. SOMMERVILLE$ asinterpreted the (convex) regular polytopes 
partitions of elliptic space, and considered the analogous partitions of hyperbolic 
space. 

Some particular processes, for constructing " uniform " polytopes analogous to the 
Archimedean solids, were discovered by Mrs. BOOLE STOTT$and discussed in great 
detail (with the help of co-ordinates) by Prof. SCHOUTE.~/ E. L. E L T E ~Further, 
completely enumerated all the uniform polytopes having a certain " degree of regularity," 
these including seven new ones (in six, seven and eight dimensions). 

The  object of the present paper i s  to exhibit these seven polytopes (here named 2,,, I,,, 

321, 421, g41), along with certain others, as members of one family ;and to investigate 
ihe relevant groups of symmetries. 

I should like to express here my thanks to Prof. BAKER for his advice and encourage- 
ment. The Appendix in regard to the cubic surface, was suggested by him. 

" " RQduction d'une IntQgrale Multiple qui comprend I'arc du cercle et l'aire du triangle spherique comme 
cas particuliers," ' LIOUVILLE'SJournal,' vol. 20, p. 361 (1855). 

" Einleitung in die Lehre von der Kugelteilung," ' Rlarburg. Ber.,' p. 31 (1885). 
$ " The regular divisions of space of n dimensions and their metrical constants," 'Palermo Rendiconti,' 

vol. 48, p. 9 (1923). 

3 " Geometrical deduction of semiregular from regular polytopes and space fillings," 'Amsterdam 
Proceedings (Koninklijke Akademie van Wetenschappen),' vol. 11,No. 1 (1913). 

/ /  " Analytical treatment of the polytopes regularly derived from the regular polytopes," ibid., vol. 11, 
Nos. 3, 5 ; vol. 12, No. 2. 

7 " The Semiregular Polytopes of the Hyperspaces," Hoitsema, Groningen, 1912. 
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1.1. A " polytope " is the appropriate extension, to  many-dimensional space, of the 
familiar polygon and polyhedron, which we shall call IT, and II, respectively. IT, 
is taken to mean a segment of a straight line, considered as bounded by its two end 
points IT,. 

An m-dimensional polytope IT, is then defined inductively, as a simply-connected 
portion of m-space, bounded by a number (more than m) of polytopes IT,-,, such that 
every IT,-, (occurring among the boundaries of the II,-,'s) belongs to just two of the 
' s .  (The number of ITrn-,'s or ITrn-,'s to which any IT,-, belongs is, of course, 
more than two.) As we shall consider none but " convex " polytopes, it is assumed that 
no two ITrn-,'s have any common points not on their boundaries. 

1.2. It follows from this definition that IT, possesses " elements " II, for all values 
of r from 0 to m - 1,and we can say it possesses one element II,,,, namely itself. 

Let 
( T  I 

denote the number of elements II, ; so that 

are the numbers of " vertices," " edges " and " bounding figures," respectively, and 

The special property which distinguishes the general polytope from other kinds of 
" configuration " is 

1.22 
9n 

z (-1)l. ( ? I j m )  = 1. 
T =  0 

When m = 0, this is a particular case of 1.21. When na = 1and 2 it gives 

(" a line has two ends ") and 
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(" a polygon has as many sides as vertices "). When m = 3, it is the famous EULER'S 
theorem, of which the neatest proof is LEGENDRE'S* (by means of spherical triangles). 
Por a proof in the general case, see $ 16 of H. POINCARE'S" Analysis Situs."? 

We can replace m by any smaller number s in a general identity such as 1.21 or 1.22, 
if we let 

( r  :s :m) 

denote the number of el
venient also to let 

ements 

(:I 

II, be

,n) 

longing to  a particular element II,. 

( 5 s ,( m) 

It is con- 

denote the number of elements IT, to  which a particular element iT1, belongs. If we 
restrict the II,s's and IT, to belong to one II,, the number of II,'s is naturally called 

Clearly 

1.3. A " sphere-analogue " is the locus of points (in m dimensions) at a fixed distance 
(called the " radius ") from a fixed point called the " centre." If any straight line is 
drawn through a fixed point P to meet a fixed sphere-analogue in A and B, it can be 
proved that the harmonic conjugate of P with respect to A and B lies in a fixed " prime " 
or (m - ])-space. P and the prime are said to be " pole and polar " with respect to  
the sphere-analogue. 

Two polytopes are said to be ('reciprocals " (of one another) if the vertices of one 
and the primes (containing the bounding figures) of the other are poles and polars with 
respect to  a sphere-analogue whose centre is strictly inside the polytopes. Thus we 
can say that a vertex II, " reciprocates " into a bounding figure IIm-, ; that an edge 
I1, the join of two vertices, reciprocates into an element ITm-,, the common part of 
two bounding figures ; and, generally, that reciprocally corresponding elements are of 
dimensions adding up to  m - 1.  Since a polytope is supposed to  have one element 
IT,, to which all its lower elements belong, it is natural to assume that the reciprocal 
polytope-and therefore any polytope-possesses one hypothetical element II -,which 
belongs at  the same time to every proper element H,. Expressing this idea numerically : 

* " Elements de GQomBtrie," liv. 7, Prop. 25 (1794). 
t 'Journal de l'I?kole Polytechnique,' vol. 1, p. 100 (1895). 
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the following pairs of properties are reciprocal ( i .e . , are equal, when regarded as corre- 
sponding properties of reciprocal polytopes) : 

1.34 exhibits 1.351 and 1.352 as special cases of 1.353. 
By means of this rule, every identity can be reciprocated to  give another identity 

Thus 1.21 gives 1.31, while 1.23 and 1.24 give respectively 

1.36 

and 

1.37 

(These two identities can be generalized by changing m into n throughout.) 1.31 allows 
1.22 to be written in the self-reciprocal form 

1.4. If ItII,,possesses ( r j ~ )  11,'s of a special type p, and (sj;8) Its's of type a ; such that 
every Ti, of type p belongs t o  (:Ig) 'IT,'s of type a, while every 'IT, of type o possesses 
( ' 1 , ~ " )  n,)s of type p ; then, after a little consideration, it is seen that 

Here the " p '' and " o " can be omitted (independently) if all II,'s or all Ti,'s are of 
one type. 

Changing rn into n, reciprocating according to  1.352 and 1.353, and dropping the 
dashes, we obtain the more general theorem 
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whose meaning should by this time be clear without detailed explanation of the 
symbols. 1.41 (with r and s interchanged) can be obtained from 1.42 by putting 
n = - 1 .  

1.5. So far, we have tacitly assumed the polytope,to be finite. But it is convenient 
to  regard an infinite set of finite polytopes IT,-,, fitting together to  fill an (m - 1)-
space, as a " degenerate polytope " in m dimensions, the IT,-,'s being its " bounding 
figures." All the properties 

are now infinite, but can be regarded as tending to  infinity in definite mutual ratios, 
the ratio ( ' I & )  : (?I;) being given by 1.41. Selecting then a set of finite numbers ('I,,)' 
having these proper ratios, 1.22 becomes 

To take a very simple example, " squared paper," regarded as a degenerate polyhedron 

bounded by squares, has an infinity of vertices, edges and faces, but we can still say 


(0l3) : ( , I 3 )  : ( 2 1 3 )  = 1 : 2 : 1, 


and these numbers satisfy 

1 - 2 + 1 = o .  


Degenerate polytopes, like finite ones, occur in reciprocal pairs ; but now, of course, 
there are no sphere-analogues or harmonic ranges to help us. The rule given in 1.35 
for reciprocally corresponding elements still applies, if we obtain the reciprocal 
of a given degenerate polytope by taking, for vertices, any points inside the 
original bounding figures, and joining them up suitably. The identity 1.61 is 
self-reciprocal. 

1.6. The operation of moving or reflectkg any polytope (preserving all distances 
among its component parts), in such a way as to  leave it unchanged as a whole, is called 
a " symmetry" of the polytope. The totality of symmetries (including identity) of 
any given polytope IT, forms a group, whose order will be called g,,. 

If the symmetries of IT, suffice to  change (in turn) every one of a certain set of II,'s 
into a particular II, of the set, these Il,'s are said to  be " equivalent." (Clearly, 
equivalent elements must be equal.) 

1.7. We are now in a position to give an inductive definition of " uniform polytope." 
I1, and IT, are supposed to  be " uniform " always. As a basis for the induction, a 
polygon IT, is said to be uniform if it is " regular," i .e. ,  if its sides are equal and its 
vertices concyclic. Finally, a polytope in more than two dimensions is said to be 
uniform if its bounding figures are uniform and its vertices equivalent. 
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Prorn now on, " II,, 9 7  will always mean a uniform polytope. Since the symrnetries 

permute the vertices, which are equivalent, we have 


It follows that g, is finite or infinite according as IT, is finite or degenerate. 
As three-dimensional examples : the equilateral-triangular right prism with height 

equal to side, is a finite uniform polyhedron ; and the plane filled up with alternake 
infinite strips of squares and of equilateral triangles, is a degenerate one. 

It is easily proved by induction that all the elexnents of a uniform polytope are uniform. 
In  particular, all the two-dimensional elements are regular polygons. It can also be 
proved by induction that the edges of a uniform polytope are all equal. Their common 
length will usually be taken as unity. A polytope of edge a similar to I1, will be 
called IT,,a, or, if a is unspecified, IT,, x . 

1.8, We shall assume that the vertices of a finite uniform polytope, being a finite 
set of equivalent points, necessarily lie on a sphere-analogue, whose centre (called the 
" centre " of the polytope) is invariant for all symmetries. The radius of this " circum-
scribing sphere-analogue " is called the " circum-radius " of the polytope. The (m-1)- 
space filled by a degenerate polytope may be regarded as a limiting kind of circuin- 
scribing sphere-analogue, with its centre at  infinity in the normal direction. 

For reciprocating a finite 'uniform polytope, we shall always use a concentric sphere- 
analogue. (The shape of the reciprocal polytope is, of course, independent of the size 
of the reciprocating sphere-analogue.) In  order to  reciprocat'e a degenerate uniform 
polytope, we shall always take for vertices the ceiztres of the original bounding figures. 
The reciprocal of a uniform polytope is not in general uniform ; but it obviously has 
precisely the same symmetries, and therefore equivalent elements reciprocate into 
equivalent elemeists. 

1.9. If all the elenients II,, are equivalent, for each r less than some number I ,  while 
the elements TI, are not all equivalent ; i t  is convenient to give II,,,special names, 
for the larger values of 1: II, is said to be " super-Archimedean," " Archimedean " or 
" sub-Archimedean " if 1 =m - 1, nz - 2 or m - 3, respectively. The Ar~hirnedea~n 
polytopes are further sub-divided into "pure," " isohedral " and " mixed," Archimedean 

( <polytopes : pure " if the IT,-,'s (though not equivalent) are equal, and otherwise 
" isohedral " or " mixed " according as the TI,,-,'s are, or are not, all equal. 

The ordinary '' Archiniedean solids " belong to the " super-Archimedean " and " pure 
Brclsimedean " categories. 

2. Vertex Figures. 

2.1. The definition 1.7 may seem somewhat a,rtificial. It was devised in order that 
a uniform polytope, so defined, should be uniquely determined (in sha>pe) by the neigh- 
bourhood of one vertex, i.e., by what happens inside an arbitrarily snlall sphere-analogtle 

~ 7 0 CCXXIX.--A~ . 2 x 
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drawn round one vertex. We shall assume then that, given any uniform polytopc, 
there is no other uniform polytope of different shape having the same vertex neighbour- 
hood. J. C. P. MILLERhas made the interesting discovery of a non-uniform polytope 
(in three dimensions, bounded by 8 triangles and 8 + 8 + 2 squares) whose vertex 
neighbourhood is unique and the same as that of the uniform " small rhombicubocta- 
hedron."* 

It is desirable to define some sort of indicatrix which will give a clear idea of the 
vertex neighbourhood of a uniform polytope. The vertex neighbourhood (i.e., vertex 
angle) of a regular k-gon is determined by the distance, 2 cos nlk, between points 
measured off at  unit distances along two covertical sides. We say that a line of length 
2 cos x/k is the " vertex figure " of the polygon. This idea can be extended to more 
dimensions. 

2.2. First suppose that the given uniform polytope rI, is of unit edge. Those vertices 
which are the further ends of all edges at  a particular vertex A, then lie on the sphere- 
analogue of unit radius, centre A, as well as on the circumscribing sphere-analogue 
(1.8) of the whole polytope. Being on the intersection of two sphere-analogues, these 
vertices lie in a prime a, and are therefore the complete set of vertices of an (m - 1)-
dimensional polytope IT,-,, ,. This polytope is called the " vertex figure " of IT,. 
(It is generally not of unit edge, nor even uniform.) Its (s- 1)-dimensional elements 
II,-,,,may be seen to be the vertex figures of those s-dimensional elements of IT, which 
occur at  A. In  particular, corresponding to  any k-gonal IT,'s of lT,fi, IT,-,, ,has edges: 

of length 2 cos 
i% 

The vertex figure of a degenerate uniform polytope has unit circum-radius, since its 
centre is A. The centre of the vertex figure of a finite uniform polytope is the inter- 
section of the prime a with the line joining A to the centre of the polytope. 

The vertex figure is independent of the choice of A, since all vertices are equivalent. 
2.3. In  order that similar polytopes may have identical vertex figures, we must define 

the vertex figure of a uniform polytope of arbitrary edge length as having for vertices 
points measured off at unit distances along a set of covertical edges. The figure so 
obtained is clearly similar to  that determined by the ends of the edges. 

In  virtue of this definition, the assumption a t  the beginning of 2.1 implies that two 
uniform polytopes with the same vertex figure must be similar. In nearly all cases the 
similarity is " direct " (i.e.,the two polytopes can be superposed by means of shrinkage 
and motion in their own space). But the " snub cube "* (KEPLER'S" Cubus Simus ") 
and " snub dodecahedron "* both exist in two enant,iomorphous varieties (which 
cannot be superposed without reflection or four-dimensional motion). In  each of these 
cases, the two varieties have the same vertex figure ; e.g., the laevo- and dextro-snub 
cube, each bounded by 8 +24 triangles and 6 squares, both have four triangles and 

"Encyclopedia Britannica,' 11th edition, art, " Polyhedron." 



REGULAR-PRISMATIC VERTEX FIGURES. 337 

one square at each vertex, so that the vertex figure of either solid is a cyclic pentagon 
of sides 

1,  17 1, 1, d 2  

(which is unique). No such exceptional polytopes have been found in more dimensions. 
2.4. It is evident that all those symmetries of a uniform polytope which leave one 

vertex invariant occur as symmetries of the vertex figure. It is generally true that they 
include all the symmetries of the vertex figure. We shall assume that the only cases 
of failure of this theorem are those provided by the two " snub solids " (2.3), whose 
vertex figures (being cyclic pentagons with four equal sides) have a reflective symmetry 
not shared by the whole polyhedron. With these two exceptions then, if g?,-,,, 
denotes the order of the group of symmetries of II,-,,,, 

For the snub solids, on the other hand 

although g,-,, ,= 2. 
2.5. Let 

denote the number of (s - 1)-dimensional elements II,-,,, possessed by the vertex 
figure IT,-,,,. We have seen (2.2) that these elements simply correspond to the II,'s 
at one vertex of II,. Hence 
2.51 (S- ' /~- I , I )= (do 1m)-

Substituting in 1.41, with r =0,we have 

If we know the properties of the vertex figure of II, and the number of vertices of II,,,, 
we can thus obtain the number of IIs's which have (')I;) vertices. 

Since the vertices of a polytope correspond to the bounding figures of its reciprocal, 
the reciprocal of II,, has only one kind of bounding figure, and this bounding figure is 
the reciprocal of IT,-,,, (with respect to an (m - 1)-dimensional sphere-analogue 
concentric with II,-,, ,). This agrees with the fact that (by 1.35) (ql,-,) and ( F ' l m - l ,  
are reciprocal properties if s + sf = m - 2. 

2.6. If II, -,, ,happens to be uniform, its vertex figure is denoted by H ,-,, ,and is 
called the " second vertex figure " of R,. Extending this idea : if II,,-,+,, ,,-, i s  
un$5orm, its vertex figure II,-, .is called the " uth vertex figure " of IT ,, . It follows 
that IIm-,,, is the (u - v)th vertex figure of IT,-,,,, and that the uniformity of 
R,-,+ ,,,-, implies the existence of IT,-,,, for all v s u. II,,,, must be taken to 

2 x 2  
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mean IIn,. The existence of TT ,,,,,-, (i.e., the regularity of II,, ,,-,) would trivially 
imply the existence of II,, ,,. 

The (s - u)-dimensional elements n ,-, ,of II ,,,-,, may be seen to  be the uth 
vertex figures of those s-dimensional elements of 11, which occur at one IT,,-,. Expressing 
this fact numerically (the properties of II,,,, being distinguished from those of II, 
by changing " p " into "p, u "), we have 

2.61 ("-"lqn-tL,tL)= (,:I In)) (U -- 1 s 5 m). 

This is a special case of the still. more obvious relation 

in which we may, as usual, replace rn by rz (5m). 

Substit,uting 2.61 in 1.41, with r = u - 1, we have 


(The assumption that a,-,, ,,exists implies that the II,-l's are all of one type.) 

If IT,,, has a uth vertex figure, 2.41 can be extended so as to  give 


2.64 Y m  = ('1%) ('In,-1, I )  ('lm-2, r )  ('Iqn-u+l, ZL-I)gm-U,U. 

2.7. Let 
,.~,,, (r = 

denote the central distance of a rI,, i.e., the distance from the centre of IT, to the 
centre of one of its elements II, ; so that, in particular, ,R, denotes the circum-radius 
of II,. Analogously, let 

,.En (r 5 fa) 

denote the distance from the centre of a II,, to  the centre of a IT, belonging to  the II,. 
Since the line joining the centre of a sphere-analogue to  the centre of the section by 

an n-space is perpendicular to the space of section, .R, and ,.R, and ,R, must form a 
right-angled triangle. So 

In particular (putting r = n) 
.2.72 3,= 0 
and (putting Y = 0 )  

2.73 (,R971)'= (ORTia)2-

2.8. Let 20, denote the angle subtended at  the centre of IT,, by an edge, and 20,,,, 

the corresponding property of II,, ,,. Then, supposing I!, , to be of unit edge, 


2.81 ,,R, = 4cosec 0,. 
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If n, has a k-gonal n,, II,-,,, has an edge of length 2 cos 8, where 8, = nJk. 
So, if Om-,, ,refers to  this edge, the circum-radius of I1,,-,, ,is given by 

A glance at the diagram (Fig. 1 ; in which 
0 is the centre of If,, AB an edge, and 
& the centre of the actual vertex figure 
at A) reveals the fact that 

2.83 1 = Cos e,,,. 

ORm-I,I
(Thus a given polytope 11,-1,1 cawnot be 
the vertex figure of a real polytope if 

2.84 0Rrn-1~1> 1 , )  

Combining 2.83 and 2.82, 

2.85 cos O,,, = cos 0, cosec 8 ,-,, , 
and so 

2.86 

If 11, has a uth vertex figure, we may apply 2.86 to II,-,, +,, ,-,, obtaining 

Therefore sin2 On, can be expressed as a continued fraction* : 

C O S ~e, cos2e,, ,cos2 e,, , C O S ~e2,U-,sina 01,,= 1 ---- . . . 
1 - I - - I - 1 -- C O S ~em-t,,?" 

In particular, if If,, has an (m - 2)th vertex figure, 

sin2 01,, = 1 --cos2 0%c0s2 02,I cosZ O,, ,... cos2 02,m-3 
1 - 1 - 1 - 1 - cos2 0 2 ,  

2.58 = A,/A,-l, 1 

i 
where, in accordance with the algebra of continued fractions, A, is defined by 

A, = I ,  

2.89 A, = sinz e,, 
L A v + ? =  A,+,-A,cos2 e , . .  

and A,,,-,,,, is obtained from A,-, by changing 0, into e,, ,, and 02,, into 02,@+*, 

* This use of continued fractioils is due to SCHLAFLI. 
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2.9. Applying 2.88 to  II,-,,. ,, (still supposing the existence of II,,,,-, ), 

Also 
sin2 0,,,-, = A,, ,-,. 

Hence 
2.91 sin20,, sin2 0,,-,, , sin2 0,,-,, , . .. sin2 8, ,,,-, = A,,,, 
and therefore 
2.92 	 A, 2 0. 

Combining 2.81 and 2.88, 
2.93 	 OR,,, = 4(A,%-], 1/A7??)'. 

Thus the polytope is degenerate if 
2.94 	 A,, = 0." 

The recurrence formula 2.89 enables A,, to be expressed as an m-row determinant,? 
namely 

cos 0, 0 0 0 ..$ 0 

2.95 A,, = COS 02,1 0 0 . . . 0 

O cos 8,. , 1 COS O e ,  2 0 ... 0 

1 : . . . 0 eos 0,,,-, 1 cos B2, mFr,  0I 
 O 
I 0 . . . 0 0 cos 0,,,-3 1 COS 07, w-,
I 
l o . . . 0 0 0 COS 02, ,-2 1 

3. 	Regular Polytopes. 

3.1. The very simple polytopes II, and II, are supposed to be automatically " regular." 
A regular polygon has already been defined (1.7). We define a " regular polytope " 
inductively as a uniform polytope whose vertex figure is regular. This definition is 
exactly equivalent to saying that an m-dimensional polytope is " regular " if i t  has an 
mth vertex figure. Thus IT,, if regular, possesses the complete set of vertex figures 
IIm-,, ,, from II,, ,(= IT,) down to IT,, ,(a mere point), and all these are regular. In 
particular, since there is an (m - 2)tth vertex figure, 2.9 is relevant. 

By 2.2, the vertex figure of a bounding figure of II,, is a bounding figure of the vertex 
figure of IT,,. This principle enables us to prove by induction (through the series of 
vertex figures) that the bounding figures of a regular polytope are regular, thence that 

* Polytopes for which A,-1,1 = 0 are " improper," since they require cos 82 cos &,I  cos OL,,  ... = 0. 
For by 2.91, 1= 0 implies sin 0,-,, ,= 0 for some u > 0, while, by ,, = 0 
( Z L  > 0 ) iml~liescos 02,,-I = 0. 
i Cf. SCHLAFLI,loc, cit., § VI. 

,-,,0sin2.861, 
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all the elements are regular, an$ fmally that everything of the form rl 11,,,,(which can 
be regarded either as a p-dimensional element of II,,L-,L,,,or as the uth vertex figure of 
ITp+,) is regular. 

3.2. We proceed to prove by induction that the elements II, of a regular polytope 
IT, are equivalent. As a basis for the induction, we know that the vertices of the nth 
vertex figure of IT, are equivalent (since the nth vertex figure is regular and, a fortiori, 
uniform). Now suppose that the elements IT,-,, , of the vertex figure IT,-,, , are 
equivalent. 

Take any two IT,'s of II,,,. Since the vertices of 11, are equivalent, there exists a 
symmetry which will change the first IT, into another IT, having one vertex (A, say) 
in common with the second IT,. We thus obtain two n[,'s with a common vertex A. 
By 2.2, their actual vertex figures at  A are elements IT,-,,, of the actual vertex figure 
of IT,, at A. But we are supposing the elements II,-,, , of If,-,,, to be equivalent. 
Hence there exists a symmetry of IT,-,, ,which will change one of these two IT,-,, ,'s 
into the other. By the assumption in 2.4 (since the exceptional snub solids are not 
regular), this symmetry, regarded as leaving A invariant, is a symmetry of IT,. As 
such, it must change one of the two ITn7s at  A into the other ; for, otherwise, I I ,  would 
possess two different II,'s having the vertex A and their vertex figure at A in common, 
which is absurd. 

The combination or " product " of the two symmetries here described establishes the 
equivalence of the original (arbitrarily chosen) pair of II,'s, and hence the equivalence 
of all the IT,'s. A fortiori, all the 11;s are equal. Thus we can speak of the IT,, and 
so also of the I1 ,-,,,,. 

Throughout 3.2, we have really assumed, concerning II,, nothing more than that its 
nth vertex figure is uniform. We can therefore assert the following more general 
theorem : 

If II,, has a wth vertex figure, then for all n (strictly) less than u, 

3.21 the IT,+2's are regular, 

3.22 the IT,,l's are equal, 

3.23 the IT,,'s are equivalent. 

(3.21 follows from the uniformity of the nth vertex figure, which implies the regularity 
of II,,,. 3.22 follows from 3.21, since unequal IT,+,'s would somewhere have to  
belong t o  the same a,,,.) 

3.3. We shall next prove that the reciprocal of a regular polytope is regular. This is 
trivially true in one dimension. Suppose it true for every regular polytope in rn - 1 
dimensions. 

Consider any regular polytope II, in m dimensions, and let II', be its reciprocal, 
The bounding figure of U',, being (by 2.5) reciprocal to  the (regular) vertex figure of 
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II,, is regular (by hyp~t~hesis). Also, since equivalent elements reciprocate into 
equivalent elements (1.8), the vertices of IT1,, which correspond to the bounding figures 
of IT,,, are equivalent (3.2). Hence TI', is uniform (1.7). Its vertex figure, being 
reciprocal to the bounding figure of IT,,, is regular. Hence II', is regular (3.1). 

3.31. Since the bounding figure of II', is reciprocal to the vertex figure of n,,, i t  
follows (by induction) that the (m - u)-dimensional element of II', is reciprocal to 
D,n-u, z'. 

3.32. If II,, is uniform and has an (n + 1)th vertex figure, so that its II,+,'s are 
equal (3.22) and regular (3.21), then II', will always be taken to mean the vertex figure 
of t,he reciprocal of II,,;,. II', has thus a definite edge-length, instead of being 
merely the reciprocal of II,,(irrespective of size). 

3.4. SCHLAFLI* Thcdevised the following ingenious notation for regular polytopes. 
regular polygon of 32 sides is called 

I@. 
The regular polyhedron whose bounding figure and vertex figure are respectively 

{k} and {k,) x 
is called 

(1~1,7c2) ; 

and, generally, the regular polytope whose bounding figure and vertex figure are respec- 
tively 

{ 2 - and {k,... ht-2, knt-l}x 
is called 

{kt, b> k t - 2 ,  k,,-11. 

The occurrence of " k,, ... k9:,,,-,," in both the bounding figure and the vertex figure, 
is justified by the principle (3.1) that the vertex figure of the bounding figure is thc 
bounding figure of the vertex figure. 

If 
3.41 K I ~- (Fi.1,k ~ ,  &-a, 512-11, 
it is easily seen that 
3.42 ns = {kl, k2, . . . kb-2, kS-l}, 

am-nL,u = (kU+l, ku+2> Tc,-2, km-ll XS b .  

and 
3.43 I I s -u ,  = { l ~ ~ + 1 ,  * . - k - 2 ,  ks--i}Y .ku-i-2, 
In  particular, 
3.44 I&,a = ( k % c +  11 X . 
Hence 
3.45 k,+1 -- ( O 1 2 , U )  = ( l l Z , U ) '  

* See the Preface, Actually SCHLAFLI used round brackets instead of curly ones. The same notation 

(without brackets or commas) was employed by SOMMERVILLE, 'and by VANOSS, Amsterdam Proceedings,' 
vol. 12, No. 1 (1915). 
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Since II,-,,,, is the vertex figure of II,-,+ ,,,,-,, tlre edge of IT,-,,, must be the 
vertex figure of II,>,-,, i.e. of (k,] x . This edge is therefore (2.1) of length 2 cos nlk,, 
and 3.43 becomes more precisely 

3.46 IIS-tC, ZL = {kf1+I5ku+2,... kS-y,k8-1)2 ~ 0 s-n . 
ku 

In particular, 

The vertex figure being thus definite, 2.3 shows that two different regular polytopes 
cannot have the same Schlafli symbol. But it is only for certain special values of the 
Ic's that the polytope {k,, li,, ... k,,-,, k?,,-,) can exist at all. These special values will 
now be determined. 

By the definition of O,,, ,, in 2.8, 

Hence, by 2.95, A,, is a f~znction of the h's. In particular-

3.5. Supposing 

(since the " digon 9 9  (21, which ellcloses no space, is not st~ictlya polytope according t o  
1.1),we shall enurnera'ce all the regular polytopes which can be oblainecl from tl:e 
following two necesJary conditioris : 

3.51 { k ,  , ... / and {1c25. . ./; ?,+ ,? /c,iL-I) 

exist and are finite ; and 

k15ka,  ... hm/, k7?t- I 

satisfy A,,, 2 0. (By 2.93, the polytope is finite if A,,, > 0.) 
It will appear later that these conditions are not only necessary but szcficient. 

VOL. CCXX1X.-A 2 Y 

3.82 
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In one dimensioli, we admit IT, by writing 

In two ciirnensions, (k,) is admitted for all k,, the clege~~erafepolygon (w  ) being an 
infinite straight linc broken into consecutive segments of unit length. 

111three, four and five dimensions, we have :-

(Finite) (Degenerate) 

rn = 3. (3: 31, (3, 41, (4, 31, (3, 5)?(5, 3) (4, 41, (3, 61, (6, 3) 

Since (3, 3, 3, 31, (3, 3, 3, 4) and (4, 3, 3, 3) are the only finite regular polytopes in 
five diinensions, it follows by repeated application of 3.51 that ihe oiily remaining 
possibilities: (rfi  > 5) are :-

rKIlt={3, 3, ... 3, 31, 
I 

j 8 . . , = = @ , ~,... 3;4). 
These all m t i ~ i y  

Ant > km-l) 2~ 0.I&? .,. 1iq,b-~3 

For, me can prove (by induciion, using 2.80 in the Loriii 

4 7 C  9 XA, 1 ,  - - >~ ~ - ~ 1 1 1  A ,,,, :A,-A,_ ,COS"-
12, k.i 

that 
A,,, (3, 3, ... 3, 3) = (111 + 1)/'2", 

A;, , (3 ,  3, . * .  3, 4) =A,,,(4, 3, ... 3, 3) = 1/'2""l 
and 

a,,,(4,3, ...3, 4) = 0. 

Tlius a,,,, P,,?,y,,, are finil e ,  while 6,,, i s  degencca-te. 
L ~ ~ t ~ i a l I y ,71nsP,,%a d  y,,, are well liuo~vii under the respective names " regular simplex," 

( (  cross polytope " and 'bieasurc polytope." In particular, 

a, = (3, 3) is the. regular tel;ralieLlron, 

y, = {4, 3) is the cube. 
Also 

8, = (4, 4) is the '(squared paper " pattern (1.5). 
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I t  follows at once from 3.53 that 

u,,, has bounding figure a,,,-, and vertex figure cc ,,,-,, 

P ,  ,, ,, ,? x,,?-l ? ,  ? 3 ,?  P , i i - I ?  

> ?  9 Y V I - I  3 ,  > 9 ,, x,ii-l 4 2 ,  

9 , ,? YIli-1 ,, ? , ,, Pn,-142. 

Using these facts to define CT-,)?,Pel,  ym,S,,, when nz is small, we have successively :-

u 2  = (31, al = ()  = 111 (unit length), uo  = ITo, 


P2={41, P1=a12/2, 

y 2  = P 2 ,  Y 1  =El, Y o  = ao, 

S2 = {m). 

Since the bounding figure and v ~ r t e x  figure of a regi~lnr polylope are reciprocal to 
the vertex figure and bountfing fignrc of tllc reciprocal polytopr, it, is easily proved by 
induction t)hat tElc polytopes 

are reciprocal. In partic~lar, P,,, and y,,, are reciprocal, while a, ancl 6,,, are eacli self- 
reciprocal. 

With the meaning assigned in 3.32, we now have 

rl",, = {lr,-,, k,-,, . . . k,, k,) 2 cos -X . 
h1L 

3.6. In order to prove that all these polytopes really exist, we shad1 specify Cartesian 
co-ordinates for all the vertices of each polyt opc (except the polygons, whose existence 
is obvious). 

The notation here employed for co-ordinates is a,s follosvs :--

($1, X2? ... 5%) 

denotes the set of points obtained by permuting the x's in every possible way. 

denotes the set obtained by permuting them evenly. The sign of ambiguity (+) placed 
before a bracket indicat,es that every co-ordinate within lnay have either sign. 

denotes the set obtained by permuting x,, ... xp among themselves, x1,+,, ... x, among 
themselves, and so on. In  particular, (a,; a, ; ...) denotes a single point. 

2 ~ 2 
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For degenerate polytopes, the co-ordinates are taken to be all integers (positive, zero 
mid negative), arranged in every possible way, subjcct to whatever coi~ditions are stated. 

Solnetirlies (e .g . ,  in the case of a,,, .\/%) it is convenient to employ m f1 co-ordinates 
with a, coristant sum (insteacl of simply m co-ordinai;es), in svhich case the polytope is 
t o  be regarded ss lying in a primp oE the (m + 1)-space. 

T ktl~vays81 aiids for ilie positive root of tlie cqnai,ion x" x - 1 = 0, so that 

On conzpnrison with 3.6, it is seen tllai, the followillg list contains co-ordinates (some- 
times j r i  i,wo all,;-rnative forms) for the vertices of all the regular polyt,opes (m > 2). 

xnr 1/2 (l?0, 0, ... 0) ; m zeros. 

r.,,, i-(1, 0, 0, ... 0) ; m - 1 zeros. 

Y ,,<2 2E (1, 1, 1, ... 1) ; m ones. 

n",,, (xl, x2,... xi,I.-i )  (all integers). 

t ( r ,  1, 0)' (cyclically permuted). 

(3, 5 )  2.e-I ( r91, 7-I, 0)l (evenly permuted). 

(8, 3) %I2 (1, 0 - 1 (mod 3) ; xl +x, +x, = 0. 

I ( 3 , 3 , 5 ) 2 ~ - ~ - / -: 


& (1, 1, 1, 1). 


r (9,r-l, r-l, r-l) (1 or 3 minuses), I 
I ( r , r , r , ~ - ~ )  (1or3minuses), 

( 5 1, 1, 1) (0, 2 or 4 minuses), 

* Cf.SCHOUTE'S treatment of the polytopes ..." (loc. cit. in Preface), $ 123,"Analytical 


t [bid., $ 160. 
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1 {3, 3, 4, 3) d2 : (xl, x2, x3, x4) ; x1 + xa + X, + x4 = 0 (mod. 2). 
---- -- --, 

j-(0, 0, 0, 0) (mod. 2)7 
:1(3, 3, 4, 3) 2 

l ( 1 ,  1, 1, 1) (mod. 2). 

(3, 4, 3, 3) d.2 : (1, 1, 0, 0) (mod. 2). 

3.7. Let g, be the order of the group of symmetries of a regular polytope II,, and 
g,-,,,,, the corresponding property of n,-,,,,,. By 1.71, 

go = 1 (so t,hat g,. = 1) 
and 

gl = 2 (so that g,, ,= 2). 
By 2.41, 

3.91 ('Irn)= gnt/ggfi-~,19 

Similarly 
('1s) =SS/.B*-~, 1 and ("I,-, s) = g,fi-,8,(qm-,-l, ,+I. 

Hence, by 2.52, 

(gs/gat) = (qs-1, I/$$-I, 1) ( S - ' l m - l ,  1) 

- 1 
- (go, 8/g'?fi-~, (O/,-$, = 1Lq7%-8-l,~+l8 )  8) 

and 

* Zbid., 3 160. 
7 Zbid., $ 144, 
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It follows that 

1L) =Yj7, 1LIgS 21 gp-8-1, Uf S4-1 

and 

(:I?>) = fs-l'-lI?>-~.-~, r+l) =Yn-1-1, r+l/gs-r-I ?+I gn-s- 1 ,  \ + I  

Putting 

so that - -
~ , ~ + 1 = 1 ,  r . v . + 2 = %  and ---1>?i,={gr,, 

we have sin-tply 

It will be found that 1.42 is satisfied identically. By 1.25, 
-
T,? = 1. 

We therefore say 
g-, = 1 (nncl tg-l, = 1). 


By 2.64, 

3.75 g m  ('I,,) ('1,z-I. 1) (O/,,1-2,2) .. * ('11, m-1). 

Similarly, by 3.72 with .s =nz - 1, 

By 1.8, reciprocal polytopes have the same g,,,. Thus 3.78 and 3.76 are reciprocal 
formuls. 

It is interest,iug to note that the  first few g's are rational furlctiolis of the k's ( 3 . 4 4 ,  
namely, 

The value of g, comes by s~bst~ituting theorem3.72 in EULER'S 

The higher g's are transcendental functians. 
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3.8. In practice, we count the number of vertices of a polytope (given by co-ordinates, 
as in 3.6), deduce g, by means of 3.75, and thence ('I,,) by 3.72. 

For a,,,, (O/,,,) =m 4 1. s o  

g l lL=( . tn+ l ) ! ,  y 8 = ( s - - t - I ) ! ,  g ~ r b - s - l , 8 + l = ( ~ ~ b - s ) !  

and 

3.81 (qi,) = (',"+'I?, 

the elements being a,. 

For P,,&,(01,1,) = 2rn, so that y,,, = 2t"n.1!, yl)t-s-l, -- 6211L -S ( n  -- s - - 1)! and 
(since, for s <  m, 11, = a,), y, -- (s + 1)! . 
Thus 

the elements being again a,. 

y,,  is reciprocal to  P,. So y,,, = 2t111fi! again, and 

the clemerlts being y,. 
The elements of 8,, are all y,, the number at a vertex heirig equal to the number of 

a,-,'s in (3 ,,,-,, uix. ,  2";'). 
The results for the renlairling iinite polytopes are as follows :-

3.9. The values of the circum-radii of the regular polytopes follow directly froni the 
co-ordinates of the vertices, or can be calculated by nieans of 2.93. Tlie other radii, 
.R,,,, are the11 given by 2.73. For all degenerate polytopes, 



350 H. S. M. COXETER ON POLYTOPES WITH 

For the$fi?zife polytopes, the values are as follows :-

4. The Gel~e~nlizedPrism. 
4. I .  Let 

( ) ( ' ) ( ~ ~ + l >X ~ ) R  etc'> 

P112 

he the -~erticesof certain fillite polytopes 

4.11 Il::!, , etc., 

I I 

OR, d Rm 1 

respectively. The11 the new polytope whose vertices are 

I 
1 

i 
,bR, 

-

dG [$L <m] 

(1 ---' jI m + l  

1 / 5  I1 ;dill i I -
Yin I J \/m -n [ I L  >-11 

I! 
(4 i 

Xg cosec -
1 1  I 

(8,s) 1 1  'I % .1 ,  
1 ' 

I 
I I 

I .\/:(aT+rrFij C,~<sj 

1 'd*(&l-a) 

I 
I I 

jr, r) 1 1  4 4 3 ~  I 1 i5-+ I 
I 

/ / 

4 2 /  1($7 - -) 1 [,I>-11 
7 3 - n  

I I I 
j3, 3, r )  7 gatT' II 7 4 1 / + ~ 3  ' 2 / 3 ( 7 3 + & )I [ j ~<41I !  

(593)3) 
I / 1 
i $7. 12 Jky 3  --.> - 11 

I -7% 

(3, 4$3)  1 1 $42 I //! 
1 1  I I 

(By 3.61, 

7 = i(l/5+ l), T" i((3 + ?/&), T~= 1/5  + 2, 

74 = & (7 + 3 1/45)) +8 = 4 (5%/5 + 11) and .e9 =4 (13 $15 + 29).) 

1 
I1 v '2~2 J2,/3r3 5-&r: 
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(in the notation of 3.6) is called the ('prism " having the " constituents " 4.11. It is 
denoted by the symbol 

4.12 	 , g ,  ng,  ...,.1 
4.2. 	The following properties are immediate :-

4.21. The prism is uniform if its constituents are uniform and of equal edge-length. 

4.22. 	 The order of the constituents is immaterial, and any constituents which are 
themselves prisms can be replaced by their own constituents. 

4.23. Constituents cco can be omitted. 

4.24. A number n of constituents a,  (= yl) can be replaced by y,, 

4.25. Constituents y,, y , ,  y,,,, . . . can be replaced by yn,,L,+,r,, ... . 
4.26. A prism with only one constituent is that constituent itself. 

4.27. 	 The number of dimensions of the prism is the sum of the numbers of dimensions 
of the constituents. 

4.28. 	 The number of vertices is the product of the numbers of vertices of the 
constituents. 

4.29. 	 The square of the circum-radius is equal to  the sum of the squares of the 
circum-radii of the constituents. 

In symbols, 4.27, 4.28, 4.29 can be written : 

4.3. It is also true that the nz-dimensional content of the prism is equal t o  the product 
of the contents of the constituents ; and that the magnitude of the vertex angle, 
measured as a fraction of the total angle at  a point in m dimensions, is equal to  the 
product of the magnitudes of the vertex angles of the constituents. 

These two theorems are respectively very easy and very hard to  prove. Neither is 
required later, so the proofs are omitted. 

4.4. 	 As three-dimensional examples of the generalized prism (a,b, c, lz being lengths) : 

is the rectangular solid of edges a, b, c ; and 

is the right prism of height h on a regular k-gon (of side 1)as base. This right prism is 
uniform (" pure Archimedean ") if h = 1. 

VOL. 	 CCXX1X.--8 2 z 
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The four-dimensional uniform prism 


C{h>, {k'll 


is bouncled l ~ y  /I: [{k'), all's and k' [{k}, oll17s. It can be constructed as follows. Take 
the k If'-gonal prisms [{k'}, all and place them base to  base, bending them about the 
planes of the intermediate bases until the two extreme bases meet, the whole forming a 
kind of ring. Make an analogous ring by means of the k' k-gonal prisms [{k}, all. Each 
of these rings has kk' untouched squares, and the complete polytope is made by inter- 
locking the rings in such a way that the two sets of squares are brought into coincidence. 

4.5. If a generalized prism is uniform (4.21), its vertex figure is obtained by taking 
the vertex figures of the constituents, in independent spaces, and joining every vertex 
of every one (of these vertex figures) to every vertex of every other, by lines of length 
4 2  (i.e., by Pi's) ; this construction being possible in m, +m, +m, + ... - 1 
dimensions. 

If the uniform prism has only two constituents, IIj,li and II:!, we give its vertex 
figure the special symbol 

( n m l ? 4 ,  1 -yE--f l m s F l ,  I). 

denotes the isosceles triangle, of sides 1, 1/52> 4 2 ,  which is the vertex figure of the 
triangular prism 

Cxz, ~11 .  

4.6. The elements of the prism 4.12 consist of all possible prisms of the form 

where Ill:) is an element of nii,  and so on. By considerirlg the number of ways in 
which the element 4.61 can occur, we find 

(In verification of 1.22, we ha,ve 

Irr particular, the number of bounding figures is 
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the bounding figures being 

4.7. Suppose the prism 4.12 to have been reduced (if necessary) in accordance with 
4.24 and 4.25, so that not more than one constituent is a y . Let ggl, gg;, ggi , etc., 
be the orders of the groups of symmetries of the constit~~ents. Then the order of the 
group of symn~etries of the prism is evidently 

where h = 1if the constituents are all different, but h = N ! N'! ... if X constituents: 
are identical, N' others identical, and so on, since the identical constituents can be 
permuted among themselves. 

Tor instance, if 
%+, = b p ,  ( P  +"10% 

4.72 	 (1 $. ~ p p )(13 -4- 1)! (2 + 1)!Yptq  = 
where 

0 if p # q ,  
4.73 

1 if p = q .  

4.8. Precisely as in 4.1, we can define the " degenerate prism " 

whose constituents 
I , 	 1 D$J,, etc., 

are degenerate polytopes. 
4.21, 4.22 ancl4.26 still apply ; but 4.24, 4.25 and 4.27 must be replaced respectively 

4.82. A number n of constituents 6, can be replaced by 8,,,,. 
4.83. Constituents 6,+,, S,,,,, 6,,,,: ... can be replaced by 6,+n,+,,r1t...+1. 

4.84. 	 The number of dimensions of the space filled by the prism is the sum of the 
numbers of dimensions of the spaces filled by the constituents. 

The description 4.5 of the vertex figure of a uniform prism still applies, except that the 
vertex figures of the constituents now lie in mutually perpendicular spaces (of m,, m,, 
m,, ...dimensions) having a common point, which point is the centre of each constituent's 
vertex figure ; this construction being possible in m =m, +m, +m, +... dimensions. 

4.9. The elements of the degenerate prism 4.81 consist of all possible (finite) prisms 
of the form 4.61, where now lJ:yP) is an element of IIg,, (.I; 5 m2,). In particular, 
the bounding figures are of the form 4.12. 

* In order to cover the case p =0 =q, 4.72 must be replaced by 
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To take a simple example, 

P2aY 22b, S2cl 


is the partition of three-dimensional space into rectangular solids 4.41. I n  particular 
(by 4.82 and 4.83) 

P 2 ,  2 2 ,  2 2 1  = P 3 ,  821 = 84. 

(" Prisms " whose constituents are partly finite and partly degenerate may be called 
< <  semi-degenerate," but are uninteresting.) 

5 .  Simple Truncation. 

5.1. A polytope which consists of the portion of m-space common to two concentric 
and actually reciprocal regular polytopes ( IT, and ITf,) is called a " truncation " (of 
IT, or I T ) .  If the radius of reciprocation has the particular value ,R,,,, so that the 
reciprocating sphere-analogue touches the n-dimensional elements of IT, and 
(therefore) the (m - .lz - 1)-dimensional elements of IT I,, the truncation is said to 
be " simple," and is denoted by 

t, IT, could have been defined simply as the polytope whose vertices are the centres 
of the IT,'s of IT,. But the mental picture of a fixed IT, and a gradually diminishing 
reciprocal ITf, is useful. 

Genuine truncations are obtained for values of n from 0 to m - 1. 

5.12 to, = I T  and = ITt,)$. 

t,, TI, is merely a point, namely, the centre of IT ,,. By 5.11: t,, IT,, is the same as t-, ITf,,, ; 
so we must take 

t-1 nnz 
to mean the centre too. 

As a familiar example of a truncation, t, fJ, (or tly3) is the cuboctahedron. Still more 
simply 

5.2. The properties of t, IT,, are functions of the properties of IT,, and will be dis- 
tinguished from them by the suffix n, e.g., (ll,,,), means the number of edges of t, IT,. 

It follows from the definition (5.1) that 

Consider a fixed II, and a gradually shrinking reciprocal IT', (obtained by means of 
a gradually shrinking reciprocating sphere-analogue). While the radius of reciprocation 
is diminishing from the value ,Rm, n,, has all its corners cut off and replaced by new 
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bounding figures similar to  IT,-,, ,. These new bounding figures increase in size until 
the position corresponding to  t, II, is reached. Then they too begin to  be truncated, 
appearing as t, II,-,, ,'s in t, IT,. Thus it is clear that the bounding figures of t, IT,, 
are of two kinds, 

corresponding respectively t o  the bounding figures and vertices of II,,,. 
The (m - 2)-dimensional elements of t, IT,, being the bounding figures of its bounding 

figures, must consequently be of the three kinds 

Similarly, or by induction, it is easy to  see that all possible s-dimensional elements are 
of the form 

5.23 tn-u ns,u, 

for a certain set of values of u. 
In order thak I'I, may have a meaning, 

and in order that t,-, IT, .  may be a genuine truncation, 

Thk number of elements t,-, IT,, ,, for each u, is equal to  the number of ways in which 
the figure I I ,  ,can occur in I I , .  Now, II,, ,is an s-dimensional element of ITm-,, ,, 
which, being the uth vertex figure of IT,, indicates the form of the neighbourhood 
of an element IT,-, (2.6). Hence ITm-,, ,occurs ("-I I,) times, and so II ,, ,must occur 
("-'I,,,) (Slm-u, u) times. 

Thus the total number of s-dimensional elements of t, IT, is 

en-s, n u = miti. (m-s, n) 

where X stands for X > 
0, n-s+l u = max.(0, n - s+ l )  

the typical element for each u being tn-,II,u. 
Note that 5.26 does not include 5.21. 
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2.61 and 2.63 respectively enable 5.26 to  be exhibited. in two alternative forms : 

By 5.21, applied to ri. E t,+, Il,,, ; for each u, ("I;), = (71-2'/s,u). 

Hence, by 1.41 with r =0, 

m-s, n 

0, n-s+l  

Pinally, using 6.21, 

5.3. Since IT, and I I ' ,  have the same symmetries, these symmetries must belong 
also to t, IT,. The equivalence of the vertices of I,, IT, therefore follows from the 
equivalence of the IT,$'s of ITm (3.2). Since simple truncations are bounded by simple 
truncations, it is thus obvious (by induction) that t,,n, is uniform. 

We now seek to justify the assumption that the vertex figure of t, IT, is 

I I ' ,  having the special meaning assigned in 3.32. 
This is trivially true when n = O or n =m - I ,  and therefore when m = 2, so we 

liave a basis for induction. Accordingly: we assume [II',, Rs-,-,, ,,,I to  be the 
vertex figure of t, II, for 0 j 9% < s < ?n,and consequently 

to be the vertex figure of t,,-,n, for o 5 n - < < 
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For each value of u satisfying 5.24 and 5.25, the vertex figure of t, 11, possesses, by 
5.29, 

(n-llTt) (s+u-n-1 Im-Tt-1, n + l )  

(s - 1)-dimensional elements 5.32. We have to  show that these are precisely thr: (s - 1)-
dimensional elements of the prism 5.31. 

By 4.61, the typical element of 5.31 is 

IT1,,, being (by 3.31 ,with rz for rn and rz - r, for u) the r,-dimensional element of IT I,. 
Since the number of n[Ir l ,  ,-rl's in 1111, is ("-'t-'I,),* while the number of ITr,,n + l ' ~  in 

Ilm-n-l,n+1 is (rllm-n-l, l L + l ) , it follows (by 4.62) that the number of (r, -1- r,)-dimen-
sional elements 5.33 in 5.31 is 

(m-'l-l]n) Plm-n-1, a+]) ,  
where 

We can identify the elements 5.32 and 5.33, and the number of times they occur, by 
putting 

The inequalities 5.34 then become 

which are together equivalent to 5.24 and 5.25. 
The argument, that 5.31 is consequently the vertex figure of t,IT,, (if not entirely 

justifiable, as assuming that the elements of such a prism cannot be re-arranged to form 
a new polytope,) appears convincing, especially as the vertex figure of t, IT,, must possess 
the symmetries of both IT, alid II,-n-l, ,+,. 

Putting this result in terms of SCHLAFLIsymbols, the vertex figure of 

(The two constituents of this prism are the vertex figures of 

{ht, kn-l, h,k1) and (k,,,,, 1c,+,, ... Te,,-,, k;,,,-,)
respectively.) 

* By 1.351 (with n for m, r ,  for sf and consequently ?z - r ,  - 1 for s), the number of 
(n - r ,  - 1)-dimensional elements of n[, is the same as the number of s,-dimensional elements of II', 
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5.4. Let 0 be the centre of a IT,+, of IT, ; Q the centre of a ITn-, belonging to this 
IT,,,, ; and P, P' the centres of the two IT7,'s of the IT,+, which meet at  this ITn-,. 
Let 

(a), 

be the edge-length of the actual truncation t,IT,j,. Then we have PP' = (a),, 
OP = .R,+l, OQ = .-1R,+1, PQ = .-lRn, and 
OPQ is a right angle. 

Hence 

5.41 (a), = 2 n-1Rn nRn+l/n--lRn+l. 

0 


We shall in future regard t, IT,, as having been 
magnified until its edge-length is unity. 

Let be the circum-radius of t, IT,, (for unit 
edge). Then, since obviously 

P' 
FIG.2.  

(0Rn)n (a), = nRm, 
5.41 gives 

5.42 (oR',,)n = n-lRnt I nRn,/J n-lR, nRn +I. 

5.5. The following simple truncations happen to be regular, as may be seen (by 
4.25) from their vertex figures, here placed alongside :-

ha, = p3 [XI>all = p 2  

t1S3= 8, [PI>Pll = I32 4 2  

t 1 P 4  = t 2 ~ 4- (3, 4? 3) Lal, P 2 1  = [ P 2 )  x l l  = Y 3  

ti(3, 3, 4,3) =.l t285 = t3 (3, 4, 3, 31 = (3, 4, 3, 3) [xi, y3] = [P2, Pz]  =; EY~,xi] =I ~4 

By 4.71, the order of the group of symmetries of the vertex figure 5.31 is 

(gm-1,l)n = Agn gfn-,-I, ,,+I, 
where 

h = 1 in general, 
but 

h = 2 if n',, = ,,,-
(which implies 

m - 2n + 1 and lI'9j,= IT?,,). 
Also 

h = if rI tn yfla and Hm-n-l,&l = yvb-,-s a 
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(which implies 

= , . 3 , 4 ,  . .4 ,  3 . .  3) with lC,,=l~,,+~), 

since this case was excluilecl in formulating 4.71. Hence, by 2.41, 5.21 alld 3.92, the 
order of the group of symmetries of t,,II, is 

5.51 
where 

h = 1 in general, 

5.52 	 7 h = 2 for tn a,,,+,, 

[ h  = 3 for tlP, = t,y, (= (3, 4, 3)). 

5.6. Here is a summary of the chief properties of tlie simple truncations (excluding 
those truncations which are regular) :-

5.7. Let 
(111,Of/) 

stand for 
1 . 1 . 0 )  with p ones and q zeros. 


If p > 0 and q > 0, the ("zq)points 

(IP, 09 

are the vertices of t,-, a,+,-, 4 2  (= t,-l a,,+,-, ? / 2 ) .  For, of these points, those 
ilearest to ( l p  ; 01) are (Iii-', 0 ; 1: Oq-l ) ,  namely the vertices of [a,-,, a,-,] ~ ' 3 .  

VOL. CCXX1X.-A 	 3 A 
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Again, the 21'("q) points 
i (I", 0,) 

are the vertices of tP-, P,+, (=- tqypt q  4 2 ) .  For, of these points, those Ilearest to 
( l p  ; Oq)  are (Ip1, 0 ; A 1, 0"')) namely the vertices of [a,-,,P,] 2 / 2 .  

Thus, and s;milarly, wc have the following co-ordinates :-

t 1 ( 3 .6>\/2 : (1, 0, - 1) (1~10d.2) ; IC1 $- X 2  + X3 == 0 

or (1 ,  0,  0 )  (mod. 2) ; x, +z, +x, = 1. 

(48 'points), 

& (27, T,1, 7-I)' (192 ,, ), 

" Cf.%CHOUTE'B ''Analytical treatnlerlt of the poly toye~..." (Joe, ~ i t ,in Preface), 5 123. 
Ibid., 3 160. 
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r t  (27, 0, 0) (48 points), 

t,  (3, 4, 3, 3) 2 / 2  : (2, rt 1, + 1, 0) (mod. 4). 

(+2, rf 2, rrt 2, 0) (mod. 61, 
t ,  (3, 3, 4,  3) 2 : { (& 3, & 1, i-1, rrt 1 )  (mod. 6) .  

5.8. The general theory of truncation can be extended to the case where n,, though 
not regular, has a z~th vertex figure, u being greater than 1 ~ .  For in this case, by 3.23, 
the H,'s are still equivalent, besides being regular and equal. \.Ye now define 

as having for vertices the centres of these II,'s. Just as in 5.3, we can show that 
t ,  II, is uniform, its vertex figure being 

[n'n, n m - n - 1 ,  n+13. 

Formula 5.42 and 5.21 continue to apply ; and so does 5.28, provided we allaw 
t,-,TI,,, to take several forms (for the same value of ZL) corresponding to the various 
kinds of n8+,which may occur in HW,. 

5.9. By 4.21 and 5.35, tit, {k,, k,, ..., k,-,, km-l) exists if k, = k,,,, and then its 
vertex figure is found to be 

* 	Ibid. ,  jj 160. 
7 	Ibid. ,  3 144. 

3 ~ 2 
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in the notation of 4.6." Except in the tzivial case of 

tL t l8 ,  - t16, = 6,, 

it always happens that k, = 3. The actual cases are tabulated below 

6. hy, nncl h6,, v.,h ccnd ea,. 

6.1. In order to establish the uniformity of a polytope whose vertices are a given 
set of points in m dimensions, we have to prove :-

(i) That the points are equivalent. 

(ii) That those points which are nearest to 	a particular point A (of the set) are 
sufficient to determine an (:n- 1)-dimensional polytope. 

(iii) That the vertices of 	 a typical bounding figure of each kind (i.e., one typical 
bounding figure from evcry set which are known to be equivalent among them- 
selves) of this (m -- 1)-dimensional polytope, along with the point A and certain 
other points of the original set, are the complete set of vertices of some uniform 
(nz - 1)-dimensional polytope. 

This practical rule will be applied to special cases in the present chapter, and in 
chapter 9. 

6.2. It is well known that the vertices of the cube (y,) are also the vertices of two 
concentric tetrahedra (a,d2).  It is almost equally obvious that the vertices of y, 

are also the vertices of two concentric P4dZ's. We accordingly write 

and seek a generalization, hy, (short for " hemi-y,, "). 

* Thus titnII,,Lexirits if I I l  ,, = IIl,nL1,and then its vertex figure is [ ( 1 ' 1 1 , - 1 7  II,,-,-z,,+z), Ifl,,,j. 
Since k , = 3, this is s in~pl jv'4 (,It,\,' - 1, (,It,\, being given in the last column of 5.6. 
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IDconsidering groups of symmetries, we have to suppose h y ,  -- (2) (the " digon " ) a  

For all other purposes. we drop a dimension a ~ d  say 

hy2= cxl. 

hyl = a,. 

nz 

In the notation of 5.7, the X (7)= 2" points 
0 

are the vertices of y,,, since they can be obtained from i (1"" by adding 1 to every 
co-ordinate and thea halving throughout. 

We define 
hy7 d2 

as having for vertices half these points, namely the 2""' points 

where, as usual, means " the greatest integer not greater than m-. 9 ,  

2 

Applying t,he rule 6.1, we have :-

(i) These 2"-' points are equivalent, since the operation of subtracting two of the 
co-ordinates from unity, while leaving the set of poislts unchanged as a wholo, changes, 
after a sufficient number of applications, any point of the set into any other. 

(ii) Taking the typical point A to be (10, Om) or (0, 0, ... 0, O), the nearest points 
(distant 1 /2 ) are (I2, Om-", namely the vertices of t , ~ , - , 1 / 2 .  

(iii) t,am-, 2 / 2  has just two kinds of bounding figures : 

t m2 with vertices (I?,Om-" 0 ) :  

am-2 2/2? ,, > , (1; 1, o ? ~ ~ - ~ ) .  

These points, along with A, occur among the vertices of 

re~pect~ivelp.But hy, is uniform. Hence, by induction, hy, is uniform ; it's vertex 
figure being 

tl%--l. 
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By subtracting o w  of the co-ordinates from unity, it is clear that the  rest of the 
points 6.21, namely 

6.23 

are the vertices of the complementary hy,,,42. 

4.3, 13y 3.81 and 6.28, the numerical properties of t l~ , , - l  are 


The properties of hy, can now be declnced by means of 2.52, since me know that 

i n 1 , 1 ,  ) 
' 2  refer to f,a,,-,, the results are as follows :-

I I 
( O  I n 0  1 ! (21,,z) 1 ( 1 ) (s> 2,( s / j i ! )  

2 m - I  1 2"' -?( : )  I (7 )  1 ( r ; )  + 2 m - I  (-y )ZI~Z-i pi?-~ 
' i lI 

Putting s =m - 1, we see that (if rn > 3) h y ,  is bounded by 

On referring to the co-ordinates, i t  is found that the centres of the bounding hy,-,'s 
ancl of the boundiiig a,_,'s are the vertices of [ 3 , ~  2nd IW,X respectively. This is a 
particular case of the pheliomenon called " setni-reciprocation," explaiqed in tlze next 
chapter (4.8). 

6.4. By 3.9, the circum-radius of y, (and therefore of hym1/2) is idriz. Hence that 

The order of the group of symmetries is given by 2.41 and 5.6 : 

Except when nz =4, this order is, as we should expect, half that of y,. 
6.5. The vertices of 6, are (by 3.6) the points 

whose co-ordinates art: every possible set of m - 1 integers. These points fall into 
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two categories, according as their co-ordinates have an even or odd sum. The points 
in either category are the vertices of ;t degenerate polytope called 

Let us apply 6.1 to the former set- 

6.51 ( x  x . .. x ) ; ~r;,+x2 f .. . + x,-I = 0 (mod. 2). 

(i) These points are equivalent, by means of the operation of adding 1 to each 
of two co-ordinat'es. 

(ii) Taking A at the origin (On"'), the nearest points are + (I2,Om-"): namely the 
vertices of t, Pm-, 4 2 .  

(iii) tlpm-, 4 2  has two kinds of bounding figures : 

tl~,-p d2, with vertices (1" 

P,-, %/2. with vertices (1 ; On'-3), 

These points, along with A, occnr among the vertices of 

respectively. Hence ha, is uniform ; its vertex figure being 

6.6. Since, by 5.5, t1/3, ==: (3, 4, 31, it follows that, 

Note also 

h6, (the system of tetrahedra and octahedra filling three-dimensional space) is (by 1.9) 
" super-Axchimedean," as also are 

(the cuboctaliedroxi, vertex figure of hS,), 

t, (3, 5) (the icosidodecahedron), 

t 3 ,  6 (the system of triangles and hexagons, two and two at em11 vertex, 
filling a plane). 

Since tlPwl-l is bounded by 2".-l t1a,,,-,'s and 2 (m- 1) (3,-,'s, it follows that; h ~ , ,  
has 2"-l h ~ ~ - ~ ' s  - meeting at  each vertex. On referring t o  theand 2 (m 1) P,,-,'s 
co-ordinates, it is found that the centres of the hy,-,'s and of the F,,,-,'s are the vertices 
of 8,,, x and hS, respectively. 
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6.7. Since hy,, alrd hS,,, have uiliform second vertex figures ([al, a,,&-,] and [a,, p,-,I 
respectively), it follows from 5.8 that they each have two simple truncations. 

/ tihyIlL has vertex figure [a1, a,; a,-,] = [p,, a,,.-,1,
I 
I tahyna > > 	 Iv-Z,( ~ - 07~,n-,k)l,) >

-i
1 tllz8,n > ) ,) [XI,K I ,  Pm-a1 = [Pd, Pm-31, 

I 
[ tehsn, > >  > > i.2, (go 7Pm-4)J. 


011comparing with 5,6 ,  we thus find that 


6.5. 	 Let 

.,,,h J2 (" a,,,-hedroid ") 


denote the section of S,,,;! or of hS,,,, d2 by the m-space 

that is, the degenerate (m $- 1)-dimensional polytope whose vertices are the points 

Of these points, those i1eares.t to (i.e., distant 4 2  iroln) the typical point (O"H1)are 

Tllc nz-dimensional polytope whose vertices are the nz (m -11)poirlt,s 6.82 will be 
called 

( * '  expanded er,!, "). 

Of these po i~~ts ,  	 ;-1) arethose nearest to (1 ; 0""' 

(0 ; 1, Om-\ - 1) and (1 ; 0 ""2> - 1 ; 0) ,  

namely the vertices of an (fr~ - 1)-dimensional polytope which may be described as an 
'' antiprism " oil am-, 4 2  as base. This alltiprism (when reduced in linear dimensions 
by 1 : 4 2 )  is denoted by 
6.83 	 (a112-2 .--x---a,,-2). 

It is bounded by two a,?,-,'s, reciprocally situated in parallel (11.2 - 2)-spaces, together 
with ("'zl) (u,-~-J. -X , - , -~ ) 'S  each joining an oc,,-_ of Ihe first a,,,-l to the reciprocally 
corresponding a,-,,-, of the second, for ail relevant values of n. 

.\/'% ,,ecc 
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By considering the points 


(1, on ; 0"-1+1, -. I), 


we see that ea, is bounded by (:Ti) prisms [a,, al,,-,-,], for all values of n from 0 to  
m - 1. Therefore ecc, is uniform, its vertex figure being the antiprism 6.83. 

Hence also the (s - 1)-dimensional elements of ea, consist of (:',:)
 (i::) prisms 
[an, for all values of n from 0 to  s - 1. 

Now, the vertices 6.84 of a typical bounding figure of the ea,, 4 2  (vertices 6.82) occur, 
along with (On"'), among the points 

(lr,OfL-'+l ; On$-'-*, - lr); Y = 0, 1, ... min. (n + 1, m - 9%). 

These points are seen to be the vertices of the t,a, 4 2  obtained from (ln+l, Om-") by 
subtracting 1 from each of the first 9% $1 co-ordinates and then reversing all the signs. 
It follows by 6.1 that a,,h is uniform. The vertex figure of a,,h is ea,,, and its bounding 
figures consist of all the simple truncations of a,, each vertex being surrounded by 

Also the s-dimensional elements of a,,h at  one vertex consist of 

The figure obtained by drawing sphere-analogues (of unit diameter) with centres at  
all the vertices of a,h, seems to represent the closest possible packing of an infinity 
of rigid sphere-analogues in m dimensions. (The three-dimensional case is known as 
" normal piling.") The number of sphere-analogues which touch a given one is thus 
m (m + I),  the number of vertices of ea,. 

Since a,h possesses a second vertex figure, it has (by 5.8) a truncation 

bounded by ea,'~ and t,t,am7s, whose vertex figure is 

6.9. ea,,, can be constructed as follows.* Take an, (supposed of unit edge), and move 
all its bounding U,,-~'S symmetrically away from its centre, each through a distance 
equal to the circum-radius of a,. TWOa,-,'s which were originally adjacent are now 
separated to such an extent that their bounding a?,,-,'s, one of each, which originally 
coincided, now appear in parallel (m- 2)-spaces at  unit distance apart. These two 
a,-,'s can be connected by a prism [ol,,-,, all. The new polytope is still not completely 

* 	This construction is due to MRS. HOOLE STOTT (see Preface). The " e "  of ea, is short for 

her 	" e,,." 
VOL. CCXX1X.-A 3 B 
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bounded until we have inserted prisnls [a,,,- ,, x2], ... [al, a,,,-, 1, and finally K,-~'S 

(corresponding $0 the old vertices). 
Since the same ea,,, can bc constructed from the reciprocal a,,, ea,,, has twice as many 

symmetries as a,,. Thus 
Y,,, = 2 (m + 111 (m > 1). 

This result can also be obtained by 2.41 ; since 

while the antiprisnl 6.83 possesses the (m - 1)! ~ynlxnetries of a,,-, combined with the 
reflection in its own centre. 

Note the following particular cases :--

7.8. Let 

denotc the uniform (r  -t 1)-dimensional polytope (if such exists) whose vertex figure is 
a given (finite) polytope 11,., and 

11-I-" 
7 

the uniform (r + u)-dimensional polytope (if there is olle) whose vertex figure is ll-'-"-'r e 

It follows from this definition, that; the nth vertex figure of IT;t" is 

9.11 11-t-u-npr 

n;tObeing the same as IT,. 


The particular cases when IT, is regular are as follows :--


(a, 2 cos ~ / k ) - ~ - ' =(k) ,  

al;tu= a r t to  


+u -

Pr - Pr+m 

(xr1/2)+l = Yr+l, 


( Pr1/2)'.' = 


( M ~ T ) + ~= (3, 5) ,  


( ~ 2 ? . ) + ~= (5, 31, 


Note that (%,a)+and (a,a)+. are reciprocal. lc 


As a further example of the notation, (ex,),)+' = a&. 
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Assuming II,fl to have (by definition) unit edges (a,), we can assert that every 
u-diniensional elemen6 of IT:" is 

Making the convention that 

7.12 =a, if 9% < U ,  

it follows that every n-dimensional element of IT,+" is of the form 

In particular, the bounding figures are of the form II$-U1. 

7.2. In 5.8 we remarked that IT, has an nth truncation if it has an (n + 1)th vertex 
figure. This condtion is satisfied if II, = since then II,-,-,,,,., = IT,. 

By 5.31, tho vertex figure of t, II?""" is [ ( ) ' , 1 ,  . [ a  1 .  Thus we 
may write 

7.21 t ,  l'Irtnf1= [a,, II,]'-l. 

By 3.9 and 4.29, the squared circum-radius of [a,, a,]is 

Hence, by 2.84, TI,i'l'' cannot exist if 

By 2.83, it can only be degenerate in the critical case when 

since then [a,, TI,] must have unit circum-radius. 
The inequality 7.22 can alternatively be obtained a's follows. By 2.83 and 2.81, 

* Xenning t ,  (IIgnfl)and not ( t ,  B,)+"+l. 

3 ~ 2 
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Hence, if IT, has circum-radius ,R, = ,di(1 + L),  
then IT:" has circum-radius 

X - 24 

which is imaginary if x < u < x f  1. 

So II,f" is impossible if x < u,* 

It is degenerate in the case of equality, because its circum-radius is then infinite. 

7.3. The main object of this paper is to  examine all polytopes of the form 

the constituents being regular. With these are intimately associated the polytopes of 
the form 

But [IIZ;, ITg:, IT::]+ and [IT::? ITgj, HE:, IIgj]+l never occur ; because [a,, a,, allf1 
and [az, a,, a,, a,] have circum-radii 1 / 3  and 1/2 respectively, while a , fo~ t io r i more 
complicated would-be vertex figures have circum-radii exceeding unity. 

It is easily verified that the only possible polytopes of the form 

[ n g ,  HE;] +I, 

with the existence-condition (by 2.84 and 4.29) 

let, y = [ Z L  - 2).  

Then , I - z > y >  w - 3 : - 1 .  

o.e., z < u - y < % + I .  

Hence nPu-g is degenerate or impossible. 

But 9>1* 

Therefore H,fUis still impossible. 
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are the simple truncations of the regular polytopes, namely :-

rap, x q l f 1  - tpap+q.t1 	 - t q  % p + q + l ,  


-

[a,, @ , I f 1  = t p  P,+,+l 	 - t q  Yp+q+l ,  

[ap, ( a , ~ ) + ~ ] + l tP ( a l ~ ) + ~ + " + ~tu+l (ap+tC+17)+1 ( p  + u5 2*),= = 


[a l ,  a ,  2/31 +l = t,  ( a ,  2/3)+ = t, (a ,  ,\/3)+l. 


All these, except [B,, @,I+', are particular cases of 

+l - t n+"l 
[ap' IT01 - p 4 ? 

which is the same as 7.21. 
By 5.6, the only t'runcations with circum-radii r 1 are : 

[a,, a,]+l with -1 +- 1 2 12 '  p + q -t1 
and 

Now 

is degenerate, and so cannot be a vertex figure. 
We are thus naturally led to consider all possible polytopes of the special form 

Cazl, ~ ~ l + ~ >  
or more conveniently 

for which, by 7.22, the existence-condition is 

(equality indicating degeneracy). 

* The oircum-radius of a,r being $7 = dt(1 + &), 
that of ( a , ~ )+lL must be 

$0 ( a , ~ ) + ~ ~  	 u> 2 7 ;is impossible if 


1 ++(l+Gu)>
1
and [a,, ( C ~ ~ T ) " ~ ] ' ~ ,if 

i .e., if 	 p f u  > 22-1 ( - 4 8 ) .  
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The symnzetrical character of this condition suggests the new notation 

the p and q being of course intercliangeahle, so that 

Putting [a?,,aP]for l l r  in  7.21, we obtain the identity 

7.35 t n n p r l  = 1 % n ,  ap, ~ q . I + l >  

from which it follows that 
7.36 ' n n p q  = ' p P p  = t q q n p  

Three polytopes, qIq, pr,$,qTL2], are related in this manner, are said to he semi-which " 
reciprocals " of one another. 

7.4. The following are the special cases of 7.33 so fas cliscnssect : 

To these might (by analogy) be added 

The only remaining possibilities, according to  7.32, are :--

The existence of these fourteen polytopes remains to be established (in chapter 9). 
Bld let us first i i l ~ e s t i ~ t e  Notetheir properties on the assulnptioli that; they do exist. 
that tlie last six of them satisfy the degeneracy-condition 
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7.5. By 7.11, the uth vertex figure of 
? L p r ,  

is 
( l b  - ~ 6 ) ~ ~ ~ 

The elernejats of itp, fall into two categories : .those of 5 i~ ~limensioas, which are all 
x's (sinlplexes) by 7.12 ; and those of > 1 1  dimensions, which, by 7.13, are all of the form 

?+,,q, 

where 
o 5 p' r p and 0 r q' :y. 

In spite of 7.34, it is useful to fix the order of the suffixes, so as to distinguish between 
equal elements which are of different type. Thus, if p > y r r > s r 0, we say ?tp, 

has elements n,, of two different types, 

~ T E . ~ ,  and 

If s > 0, ail element of type ?.L,.(,-~, belongs to ail element of type a,,, but cannot belong 
to one of type ;a,,, since r > s. 

We can prove by induction, proceeding as in 3.2, that all elements of the same type 
are equivalent, this being obvious when n = -- 1. Equal elements of different type 
are not equivalent, unless p = q ; and eve11 then it is worth while to preserve the dis- 
tinction, such elements being (like the faces OlOand OOlof the octahedron OI1) uniquely 
divisible into two congruent sets. 

7.6. Let 
[nP 21 

denote the number of vertices of [an, up, a,]+'. (Its value is thus independent of the 
order in which ib, p, q occur.) By 7.35, it is also the number of an's in n,,, so that (by 
7.41) 
7.61 [(- 1) P Y] = 1. 

By 7.42 and 7.43 respectively, 

7.62 [o P 21 = (P+,+Z),+I 

and 
7.63 [111 11 = 2Re1( n $ 3 )  = 4 2) (n +3),2 7 L ( ~ ~  
Also, by 7.46, 
7.64 [ 5 2 1 ] = [ 3 3 1 ] =  12221 = 0 0 .  

Thus the only cases which still await calculation are 

(These numbers will be found, by means of indeterminate equations, in the next chapter, 
8.7.) 
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7.7. Applying 2.63 (with n for s) to rblJ,, for which 

Xo the number of a,-,'s of the first category (7.5) is 

More symlnetrically, the number of a,-,.-,'s is 

Again, putting n + p' + q' + 1 for s and rz $-1for u in 2.63, 

So the number of elements of type 
'n,,,, 

is 

Putting rz' = n - 1 in 7.72, the number of vertices of rzp, is 

( u l l ? & )  = ( j b  + 1) [ f i  P (rl 
[(n - 1)pqI '  

Again, putting p' = p - 1, q' = q, and then p' = p, q' = q - 1, in 7.73, the number of 
bounding figures 

7.75 - and n21(~-1)f 

is 

7.74 axid 7.76 reveal the interesting fact that the numbers of vertices and of bounding 
figures of the two types, take the same values (in different order) for three semi-reciprocal 
polytopes. This fact naturally suggests, as a theorem worthy of consideration, that 
the centres of the bounding figures of qzpl are the vertices of polytopes similar to p,,, 
a d  q Another way of saying this, is that the reciprocal of fip,  has the vertices of 
pq, x and q,, x ; hence the name " semi-reciprocal." This fails when pq = 0, because 
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no, ( =a,+,+,) has only one type of bounding figure. But the theorem can hold 
even in this case, if we make the convention 

(which agrees with 7.36, 7.42, 7.61, 7.72 and 7.74, though violating 7.71), and 
re-enunciate it in the following form. 

7.8. The centres of the n( ,-,,,'s of npq are the vertices of p,,, X .  

Let this theorem (which we shall prove) be denoted by 


In the first place, the particular cases 

are obvious, since they state respectively, that 

7.81 the centres of the I,-, a,+,)s of t,a,+,+, are the vertices of a,,,,, X ,  

7.82 the centres of the a , ) ~  of a,+,+, are the vertices of t, a,,,,, X .  

7.83 the centres of the a,+,'~ of a,+,+l are the vertices of a,+,+, X. 

(7.81 is true by 5.22, 7.82 by the definition of truncation, and 7.83 by reciprocation.) 
Prom now on, therefore, we shall suppose 

By the principle of induction, it will be sufficient to deduce (n, p, q) from the theorems 

( ' 2  p', 2') 

inwhich O s n ' s n ,  O s p ' p ,  O s q ' s q ,  but n ' + p l + q ' < n + p + q .  

For the purposes of the proof, we actually hypothesize 

(n - 1 P q )  ( ,p - 1, q (n, p, q - I),  ( n- 1, p, q - 1),
7.84 

I 

(n - 2, P, q) (if % > 1) and (n, p, q - 2) (if q > 1). 

Two bounding figures (of given types) of n,, are said to  be " adjacent " if their 
contact is the closest possible. 

'YZ(,-I), and n,(,-,, (two bounding figures of different type) are adjacent if, and only 
if, they have a common n,,-,, ,,-,,. For, 1+ ,-,, occurs as a bounding figure both 
of n(,-l), and of ; while n( ,-,, ,, the other type of bounding figure of n(,-~) ,, 
cannot belong to  lz,,, -,,, nor np,,-,, to  n(,-,,,. Further, since all elements of type 

VOL, CCXXIX,--A 3 C 



376 H. 8. M. COXETER ON POLYTOPES WITH 

n(,-,, (p-l, are equivalent, every n(,-,, (,-,, of n,, belongs just to one n(,_,,, and to one 

%P (4-1). 
We shall now prove that the common element of two adjacent n(,-,,,'s (bounding 

figures of the same type) is n,,-,,,. This is obvious when p > 1 ; since n( ,-,,, is a 
bounding figure of n,,-,,,, whereas n( ,-,,(,-,, cannot belong to two n(,-,,i s .  When 
p = 1, what we have to prove is that the common element of two adjacent a,,.n+17~of 
n,, is a,. Now, the (n + 1)th vertex figure of n,, is [a,, a,], which has two bounding 
ag7s. But the (n $ l ) t h  vertex figure always indicates the incidences at an n-dimensional 
element. Hence just two bounding a,+,+,'s of n,, nieet a t  every a,,. (These two 
x,+,,+,'s must be adjacent, since the two a , ' ~of [a,, a,] are trivially adjacent.) Thus 
the comrnon element of two adjacent n( p-l, ,'s of np, is n(,-,) ,, even if p = 1. Similarly, 
the comnion element of two adjacent n,(,-,,'s is n,(,-,,. Let 11 denote the polytope 
whose vertices are the centres of all the n(,-,,,'s of n,,. It has the same number of 
vertices as p,,, : we have to  prove that it is p,, x . 

Let us investigate those vertices of IT which are the centres of certain special sets of 
1 7 s  of n .  To take the simplest possible set, it is clear that the celrtres of two 
adjacent n(,-,,,'s are two consecutive vertices of 11 (i.e., two vertices joined by an edge). 

Those n(,-,,,'s which are adjacent to a given n,(,-,, meet the latter inits n(,-,, (,-,,'s. 
Hence the centres of these n(,-,,,'s are the vertices of a polytope similar to that whose 
vertices are the centres of the ~z(,-,,( ,-,,'s of n,(, -,,. By (n, p, q - I),  this polytope 
is 

Again, the centres of those n(,-,,,'s which meet at a given vertex of n,, are the vertices 
of a polytope similar to that whose vertices are the centres of the bounding (n - I),,-,,,'s 
of the vertex figure (n - I),,. By (n - 1, p, q), this polytope is 

From the manner in which they were determined, the p(,-,,, x and p,($+,, X, 
whose vertices are the centres of these two special sets of n(,-,,,'s of .lz,,, are bounding 
figures of n. In order to  show that such figures completely bound 11, we must examine 

X'S and p(,-,,(,-,, 
pq(,-,, X's of 7.86. If p = 1 or n = 1, bounding p(,-,,,x 's or p,(,-,, x 's (respectively) 
do not occur. 

The centres of those n(,-,,,'s of n,, which are adjacent to a given n, (,-,, and also occur 
at  a given vertex of this a,(,-,,, are the vertices of a polytope similar to that whose 
vertices are the centres of the bounding (n - I)(,-,, (,-,,'s of (n - I),(,-,,. By 

the bounding p(,-,,, x 's of 7.85 and the bounding p(,-,,(,,-,, x ' s  and 

(n - 1, p, q - (,-,, ,,-,,pl) ,  this polytope is x.  From the manner of its construction, 

such a polytope occurs (n + 1) Lnp (2 - times as a bounding figure of 7.85 
- 1)P (q  -
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(vix., once for every vertex of np(,-,,), and (Y + [('
[(n -

-
 ql times as a 
(:--1) 


bounding figure of 7.86 (vix., once for every n,(,-,, a t  a vertex of %,). Thus every 

~ ( ~ - 1 )  X which belongs to a p,,-,,, x or pq(,-,,x of II belongs also to a P,(,-~,x 
or p(,-,,, X respectively. 

If q > 1, those n,,-,,,'s of 12,, which are adjacent to  both of two given adjacent 
(,-,, ,,-,,n~ t s  

centres of these n(,-,,,'s are the vertices of a polytope similar to that whose vertices 
are the centres of the n( ,-,, (,-,,'s of .n,,,-,,. By (n, p, q -2), this polytope is pl,-,,, x . 
From the manner of its construction, such a polytope occurs q [" P (4 -111times

1%P (4-211 
as a bounding figure of 7.85 (vix., once for every 'IZ,(,+, of n,(, _,,). Thus every P(~-,),, X 

which belongs to a p ,,-,,, x of II belongs also to  another p(,-,,,x. 
Again, if n > 1, the centres of those n(p-,,,'s of np,which occur at a given edge, are 

the vertices of a polytope similar to  that whose vertices are the centres of the bounding 
(n - 2)(,-,,,'s of the second vertex figure (n - 2),,. By (n- 2, p, q), this polytope 
is pq(%-,,x. Prom the manner of its construction, such a polytope occurs 

"n [(" -l) q1 times as a bounding figure of 7.86 (viz., once for every edge at  a 
[("iL--2) P ql 

vertex of np,). Thus every p,(,-,, x wllich belongs to  a p,,,-,, x of 11 belongs also 
to another pg(,-,,x . 

We have now proved that ri is completely bounded by the aforesaid P(,-~,,X'S 

and pq(,-,, X'S. Also, the vertices of II are, like the n ,,-,,,'s of np,, equivalent. 
Hence (by 1.7) II is uniform. In order to identify it with p,, x , we have only to prove 
that its vertex figure is 

(P- l ) q n *  

In  order to  do this, consider those in,,-,,,'s of nP, which are adjacent to  a given 
These n( ,-,,,'s meet the given n(, -,,, in its n(,-,,, 's. Hence their centresf i (p -~ )q -

are the vertices of a polytope similar to that whose vertices are the centres of the 
s of n  . By (n, p - 1, q), this polytope is (p -- I),, X . 

Thus the vertex figure of n is (p - I),, x .  But this vertex figure must be bounded 
by (p -- 1 ' s  and (p-l)q(,-,,'s, these being the vertex figures of pe-,), X and 

"~z,(,-,)'s, meet the common n9(,-,, of 7 .these np( ,-,,s m 's. Hence the . 

(,-,, p, x respectively. Hence the vertex figure of IT is precisely (p  - I),, and so 
I I = % , X .  

Since (0, p, q), (%, 0, q) and (n, p, 0) are all true, while (lz, p, q) can be deduced from 
7.84, i t  follows by induction that (a,p, q) is true for all relevant values of rz, p, q (i.e., 
whenever nP, exists). 

This " semi-reciprocation theorem," as it may be called, is only a particular case of a 
more general theorem, to  the effect that the cent.res of the n,,,'s of np, are the vertices of 

tp-,,-l pq, x . 
3 c 2  
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7.9. Let g,, be the order of the group of symmetries of np,, so that g,-,, is the order 
of the group of symmetries of (n - I),,. We shall prove that, if p +q > 0," 

This is true when n = - 1, since it becomes 4.72. Also, it can be deduced from 

&-I, I = (1 + spq)n ! (p + 1) ! (q + 1)! [(n - 1)p q] 

by means of 2.41 and 7.74. 
Hence i t  is true, by induction. 
For the purposes of group-theory, the violation of 7.71 is a fatal defect of the convention 

7.77, which must apply only when q = 0. When n and q are both positive, it is con- 
venient to  assume 
7.92 n(-,,,= (3, ... 3, 2, 3, ... 3) 

with n - 1 threes at the beginning and q - 1threes at  the end. " Improper " regular 
polytopes like this, whose SCHLAFLIsymbols contain the number 2, are found to have 
zero content, and are therefore most conveniently regarded as partitions of (the boundary 
of) a sphere-analogue. When so regarded, they become perfectly analogous to the 
central projection of a proper finite regular polytope on a concentric sphere-analogue. 
The simplest example is the " digon " 

I(-1)1, 

which can be regarded as the partition of (the circumference of) a circle into two semi- 
circles. 

According to the new convention 7.92, the elements of n(-,,, consist of 

, = ( $ 1  x, '~, for s n - 1, 
and 

( ) = ( ) n ( - l )q l )~ ,for 0 q' q. 

The chief disadvantage of this convention is that it makes ("I,,) = q +1, in disagree- 
ment with [% (-1) q] = 1 (7.61). (This happens because the n-dimensional elements 
now belong to the second category ; instead of thejrst ,  as in 7.5.) 

Note that n( -,,,and q(-,,, are reciprocal. 

8. The Pure Archimedean Series. 

8.1. We shall now investigate certain special cases of the polytope n,,, with a view 
to evaluating the numbers 7.65. 

* As in 4.72, the cp, has to be omitted if p and q both vanish. In  order to cover this exceptional case, 
7.91 inay be written in the form 
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The Il,-,'s (no, = of n,, are all equivalent (7.5). So also are the Ilm-,'s 
(no, = a,+,) of n3i, and the Urn-,'s (n,, = a,+, = no,) of n,,. Further, the II,-,'s 
(n,, = un+, = a,,) of n,,, and likewise the ITrn-,'s (n,, =u,+,= no,) of ns1, are equal 
but not equivalent. Also the IIm-,'s (n,, = n,,) of n,, are equal (in fact, equivalent), 
though the II,-,'s are not (being actually n,, = a,+, = no, and n,, = Pnf3).  For 
these reasons, in accordance with 1.9, we call the polytopes 

n,, (for - 2 n 5 5) the " pure Archimedean series," 

n,, (for - 2 5 n r: 3) the " sub-Archimedean series," 

(a,, (for - 2 n 5 2) the " isohedral Archimedean series " ; 

and adopt the alternative notation 

8.13 
Thus, e.g., 

8.16 3 = 1 (IA)4 = [a,, a,], (IA), = t2a5. 

8.2. In each of these series (as in the series of a's and of (3's) every polytope (except 
the last of all) is the vertex figure of the next. (PA),, the vertex figure of [ct,, a,], is 
an isosceles triangle of sides 

1, 2/2, 4 2 .  

(SA), and (IA), both have some claim to  the title " isosceles tetrahedron," the former 
being a triangular right pyramid, and the latter (in the language of crystallography) a 
" rhombic bisphenoid." 

The highest members of the series, namely 

are degenerate (by 7.46). 
(SA), is semi-reciprocal to  (PA),, and (IA), to (PA),. It is therefore desirable t o  

make a special study of the pure Archimedean series. 
8.3. By 7.75, (PA), is bounded by K,-~'S (n,, = ctn+, by 7.42) and Pm-,'s (rill = Pn+, 

by 7.43). It is convenient to  let P, denote the number of a,-,'s, SO that, by 7.76 
(with m - 4 for n), 

P m = 2 [ ( m - 4 ) 2  11/(7) (m > 2)
and 
8.31 [n 2 11 =&-(n + 2) (n + 3) ( f i  + 4) P,+4. 
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Further, since (PA), is bounded by one a, and two PIys, P, = 1. 


Putting m - 3 for s in 2.63, ("-l1,) (m-u-l/m_",,,) = (u-ll,,"_)(m-1 c
1,). 
Applying this to (PA),, whose uth vertex figure is (PA),-,, and letting the " o " refer 
to the bounding K,-,'s of (PA), (and to the corresponding crm- , - l '~  of (PA),-,), we 
have 

("-llm) p m - u  = ( Z )  p m  (u 2s m -- 2). 

Thus the number of elements u,-, (for u :m - 2) is 

In particular, the number of vertices (for m > 2) is 

8.4. The (m - 2)-dimensional elements of (PA), (= n,,), though all of them K,-~'s, 
are of two types : those of type " ap  " (= 12,,,) each belong to one bounding 
(= n,,) and to one bounding P,-, (= n,,), while those of type " p p  " (= no,) each 
belong to two bounding P,-,'s. This is obviously true when m =2 (i.e., for the isosceles 
triangle whose sides are cr,, PI, P,) and follows for greater m since (PA), is the (m - 2)th 
vertex figure of (PA),. 

If ( m - 2 1 $ )  and (m-2/$) are the numbers of a,-,'s of these two types, while ("-'I&) and 
("-lj&) are the numbers of boundmg a's and P's, we have the following relations : 

(since is bounded by m U,_~ 'S)  and 

(since P,-, is bounded by 2"-l urn-,'s). 

m-2 uPutting s =u =m - 2 in 2.63, (m-31,) (v2,,"_,) = (n"-"j,-2) ( 1"). 
This can be applied to  (PA),, the " o " standing for either of the type-symbols cr p, p p. 
It follows that the obvious relation 

implies 
8.43 

From 
8.44 

(the definition of P,), we can now deduce successively : 

8.45 ("-72)= nzP, (by 8.411, 

8.46 (m-21g)  = mP,/2 (by 8.43), 

8.47 ( m - l j & )  = Y ~ P , / Z ~ - ~  (by 8.42). 



381 REGULAR-PRISMATIC VERTEX FIGURES. 

8.5. Summarising these properties of (PA),- 

Substituting in 1.38, we have 

( m - 2

P,, iuC 
= 0 

This equation could alternatively have been obtained from either of the semi-reciprocals 
of (PA),, the elements of 

g(m-4) 1 

being-
('Im) ('In) ( ' 1 ~ )  ) \ ('Im) (r  2 4) 

and those of 
l(m-4)2 -

8.6. In accordance with the principle of 1.51, we can suppose 8.51 t o  be true even 
when m = 9, if we put 
8.61 P9=  M .  

The particular cases of 8.51, along 6 t h  the fact that. we are dealing with positive 
integers, just suffice to determine the rest of the P's. By 8.47, $P,, &P,, &P8 are 
integers ; so, if we put 

8.62 PB= 82, P, =132y, P8 =82, 
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then x, y, z must be integers. 

m = 2 in 8.51 gives 
2 + 1 - 3 + (1 - 1)/P2= 0 (identity). 

m = 3 and m = 4 give 

1 + 1 - 6 + 6/P2 - 4/P3 = 0, 
both of which reduce to 

3/P2 - 2/P3 = 2, 
whence 
8.63 P, = 1 
and 
8.64 

m = 5 and m = 6 give 

both of which reduce to 
5/P4 - 2/P5 =g, 

whence 
8.65 P4= 5 
and 
8.66 P5= 16. 

(For, since P4would be fractional if P, = 1, we must have P5r 2, so that 

P, = 3, 4 or 5, 
and correspondingly 

P - 48 16 or 16,)
5 - 19, 3 

m = 7 and m = 8 give 

both of which reduce to  
7/P, -2/P,=-& 

or 

(in the notation of 8.62). 



REGULAR-PRISMATIC VERTEX FIGURES. 

Finally, m = 9 gives 

which, in virtue of 8.61, reduces to 

28/PG- 12/P, f 3/P8 = 3T91L2'i(r 

or 
28 --;= ZYZ.- 3 +;3 

2 4 0
X 


But, by 8.67, 
28 2 

- 3. 
X Y 

Hence, by ~ubt~raction, 

- - -1 3--13--8.68 	 2 4 U 'Y 2 

8.7. We have now to solve the indeterminate equations 8.67 and 8.68. By 8.67, 

since x would be fractional if y = 1, 

and correspondingly 

so that, by 8.68, 

But x must be an integer. Hence the uqhique solut,ion: 

8.71 	 x = 9, y = 18, z = 2160. 
It follows (by 8.62) that' 

8.72 	 P, = 72, 

and, by 8.31 (thus solving the problem proposed in 7.65), 

8.8. By 7.91, the order of the group of symmetries of (PA),,,is 

8.81 	 g,, = 12 (m - 3) ! [ ( r r ~-4) 2 11 - m ! P,,,, 
VQL. CCXXIX.-A 3 D 
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which takes the following values :-

8.9. Let 

S,,,= 2 [(m - 5) 3 I],/(';") and I,, = 3 [(m - 5) 2 2] / (~) .  

Then the numerical properties of (SA),, can be expressed in the form- 

(the type-symbols referring to  the a,-,'s and P,-,'s which meet at  an a,-,), and those 
of (IA),,&-- 

Analogously to 8.81, the values of gwLfor (SA), and (IA), are respectively 


m ! S, and m ! Im# 


Here are the actual values of S, and I,, with those of P, for comparison : 


The explicit expression of 
p m ,  s,, I,, 

in t-erms of m, involves the " SGHLAFLIfunctions," on which a paper should appear 
shortly. 
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Actually, in the notation of § VII of SCHLAFLI'S"RBduetion . . ." (loc.cit. in Preface), 

ern/( f n! I,) =f,,& 	 &-4p8,(2p4, p8, +T, +x, ...) + 2fm ( 8 % - ~ 4 ,  i x ,  i n ,  ...); 

where pp =+ sec-' p. 

9.1. Consider the infinite set of points in eight dimensions whose Cartesian co-ordinates 
are either all even or all odd and add up to a multiple of 4. These points are the vertices 
of a degenerate nine-dimensional polytope which we seek to  identify with 

That the points are equivalent (in the sense of 1.6) may be seen by applying certain 
symmetries (in this case translations) which we call 

R increases every co-ordinate by 1. 
Uijincreases xiand xj(the i th and j th co-ordinates) each by 2, leaving the remaining 

six co-ordinates unchanged. (Thus 

Products of these symmetries clearly suffice to change any point of the set into any 
other. 

9.2. The points nearest to  (i.e., distant 2 4 2  from) any particular point of the set, 
are 240 in number. 	 For, those nearest to the origin (0, 0, 0, 0, 0, 0, 0, 0) are 

i (2, 2, 0, 0, 0, 0, 0, O), 
9.21 

1 1 1 1 1 1 1 1) 	 with 0, 2, 4, 6 or 8 minuses. 

We shall eventually identify these 240 points with the vertices of 

They possess symmetries which we call 

S, T,ij and (23) (i, j = 1, 2, 3, 4, 5, 6, 7, 8 ; i f j). 

* Here, and generally, whenever two or more suffix numbers occur without commas between, they are 
supposed to be permutable, e.g., Uij = Uji. 

3 ~ 2 
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S diminishes every co-ordinate by the quarter sum of the co-ordinates. 

?',, changes the sign of x, and of x,, leaving the remaining six co-ordinates unchanged. 

(G)is the ('txansposition " which interchanges the co-ordinates x, and x,, leaving the 

rest unchanged. 
Thus S is the rejection in the 7-space 

$1 + X2 + $3 + $4 4 + $6 -4- X7 + $8 = 0,$5 

T,. is the rotation (through angle n) about the 6-space 

and (23) is the rejection in the 7-space 
X1 = XI. 

The points 9.21 are equivalent. For, Tij gives all the necessary changes of sign, 
(ij)gives all the required permutations, and finally 

Actually, (ij)is expressible in terms of S and Tii. For 

9.22 (ij)= (ST,J3 or 

The following are the simplest properties of S and TZj: 

The convention 
T,,; = 1 

makes 9.23 include 
T . .=T . .=T , ,T , ,$1 3% T,T,.,=T,,T,, T,"l, 

all of which are trivial. 
hS and T,,, being symmetries also of the original infinite set of points, are related to 

K and U, by t'he equations 

(RS)" 1 = (T, Ui.,)', 

R =-= XU;' SU, = ST,, SU, S T ,  S = T, SU;' ST,, 

Uij = T, R-' T, R = Ti, S T .  =23 RT, ST, ST, R-l T, 8. 

Note that these relations remain true if 

R, S, T,, Uij 
are replaced respectively by 

U,, T,,, S, R. 
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It will be found convenient to let 

Tijk2 = Tij Tkl 

and 
T = TI,,, T,,,, (i.e., reflection jn the origin), 

so that (ST,,,)' = 1 = (ST)2. Note that 

9.3. Of the 240 points 9.21, those nearest to (i.e., distant 2 2 /2  from) any one, are 56 
in number. For, those nearest to (1, 1, 1, 1, 1, 1, 1, 1)are 

9.31 ( 2 , 2 , 0 , 0 , 0 , 0 , 0 , 0 )  and ( - 1 , - l , l , l ,  l , l ,  1 , l ) .  

For simplicity, let 

Then the 56 points 9.31 are simply 

9.33 Czj and cij, 

where i and j can be any unequal pair of the numbers 1, 2, 3, 4, 5, 6, 7, 8. 
These points, lying in the 7-space 

are to be identified with the vertices of 

They are equivalent, since the transformation 2R-I puts them into the symmetrical 
form 

(3, 3, -1, -1, -1, -1, -1, -11, (-3, -3, 1, 1, 1, 1, 1, 1). 

Besides the obvious symmetries-(ij), which interchanges the suffix-numbers i and j 
wherever they occur ; and ST, which interchanges C and c, leaving the suffixes unchanged 
-the points 9.31 or 9.33 possess also the symmetry TVkl STijkl (i, j, k, 1 being all 
different). This is the reflection in 

where e, f,g, h are the rest of the numbers 1, 2, 3, 4, 5, 6, 7, 8. Thus 

T,,, ST,,, = T,h ST,:,,. 

Introducing a new notation, let 
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Naturally 
[efgh . @kl]-- [ijkl . efgh], 

and the order of the numbers on one side of the dot is quite arbitrary. This new 
symmetry interchanges Cef, cg, ; C,j, c,, ; and so on ; but leaves, e.g., C,, and c,, un- 
changed. It is called a " bifid reflection," by analogy with CAYLEY'S " bifid sub- 
stitution.)'* 

Note that 

9.35 (ij)= [efgi .jhkl] [efgj . ihkl] [efgi .jhkl] 
and 

(The order of these seven factors is quite immaterial. The essential thing is that every 
pair have just two common numbers on each side of the dot.) 

It is convenient to omit the numbers 7 and 8 (in a bifid reflection) when they occur 
respectively before and after the dot. Thus we write 

9.37 [fgh . ijlc] = [fgh7 . ijlc81. 
Of course 

[fgh . ijk] # [ijk .fgh]. 

9.4. Of the 56 points 9.33, those nearest to (i.e., distant 22/2 from) any one, are 27 
in number. For, those nearest to C,, are 

9.41 ( 2 , 0 , 0 , 0 , 0 , 0 ;  2,O) and (-1, 1, 1, 1, 1, 1 , ;  1, 1). 

Changing the notation by putting 

9.42 ai = C, and b, = Cis (i = 1, 2, 3, 4, 5, 6)) 

these 27 points are simply 

9.43 ni, b, and c,,, 

where i and j can be any unequal pair of the numbers 1, 2, 3, 4, 5, 6. 
These points, lying in the 6-space 

will shortly be identified with the vertices of 

* SALMON'S'' Higher Plane Curves," $261. 
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That they are equivalent, may be seen by considering the 20 symmetries [fgh .ijlc], 
where f ,g, h, i,j,  k are all the numbers 1, 2, 3, 4, 5, 6, arranged in any order. Expressed 
in terms of transpositions of the symbols, 

Of the 27 points 9.43, those nearest to (i.e., distant 22/2 from) any one, are 16 in 
number. For, those nearest to a, are 

9.45 	 be, cii and ai (i,j= 1, 2, 3, 4, 5 ;  i ~ j ) .  

Applying the congruent transformation T,,SU,,TR*, these 16 points become respectively 

( o , o , o , ~ , o ;  o ,o ,o) ,  ( 2 , 2 , 0 , 0 , 0 ;  o , o , o )  and ( 0 , 2 , 2 , 2 , 2 ;  0 , 0 , 0 ) .  

By 6.22, they are the vertices of 
hy5 2d.2. 

9.5. 	Since (by 8.14) 

hy, = (PA),, 


and since (by 8.2) (PA), is always the vertex figure of (PA),,, (when the latter exists), 
the rule 6.1 enables us successively to identify the sets of points 

9.43, 9.33, 9.21 and 9.1, 
with the vertices of 

(PA), 2d.2, (PA), 2.d2, (PA), 2d.2 and (PA), 2 d 2 ,  

respectively. Conditions (i) and (ii) (of 6.1) are clearly satisfied in each case. Condition 
(iii) is automatically satisfied for such bounding figures as are a's, since then no " other 
points of the original set " are required. So we have only to  consider the P bounding 
figures. 

Now, if we are given one vertex of p, and the vertices of the actual vertex figure at  
this vertex, there remains only one more vertex of P,, this vertex being the image of 
the first vertex in the centre. Also the centre of P, is the centre of the vertex figure. 
Thus if, in (iii), the " typical bounding figure " of the " (m- 1)-dimensional polytope " 
is a P,,+, xwhose centre is 0 ,  then we have only to show tliat the image of A in 0 belongs 
to  the given set of points. 

Taking 	 bi3, C~2, 43, C23, C14, C24, C34, 

as the vertices of a typical bounding P,22/2 of the hy5 22/2 9.45, 0 is 

* Products of operations are, in this paper, to be worked from left to right. Thus, in the present case, we 
apply T,, first and R last. 
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and the successive A's and images are as follows :-

2  4 2  2 2/2 (PA),2 d 2i /
I ' 7 8  (I ,  I ,  1, 1, I ,  I, l ,  l) (O,O, O,o, 0, (A(), O)  

Image of A A in O ! I ! '56 - 1 , - - 1 , - , , , )  (0 ,0 ,0 ,0 ;2 ,2 ,2 ,2 )  

Thus the identification is complete. 

Incidentally, we observe that the numbers 


agree with the formula 8.33. 

We have now established the existence of 


(PA), (for m rQ ) ,  
i.e., of 

n (for n 5 5). 
The existelice of 

2iLl and l a 2  

follows by semi-reciprocation (7.8). Of the fourteen polytopes 7.45, we have thus 
established all save three, namely 

(SA), = 331, 

13, (its semi-reciprocal) 
and 

( 1 4 7  = 222. 

9.6. Consider now the totality of points whose eight co-ordinates, all even or all odd, 
add up to x e ~ o .  These points, whose equivalence can be established by means of the 
symmetries 

Tijkl RTijkl, 

are the vertices of a degenerate eight-dimensional polytope which can be regarded as 
the section of (PA), 2 2 / 2  by the 7-space 

This polytope will be found to  be 
(SA)*2 4 2 .  


The 126 points distant 22/2 from 


9.62 (0, 0, 0, 0, 0, 0, 0, 0) 
are 
9.63 (2, 0, 0, 0, 0, 0, 0, -2) and (1, 1, 1, 1, -1, -1, -1, -1). 
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These points are equivalcnt by rneaiis of the bifid reflections Ttjkl4STlijkZ. 
They will be identified with the vertices of 

(SA), 2,L/2. 

Of these, the 32 points distant 2 4 2  from 

9.64 (2 ; 0, 0, 0, 0, 0, 0 ; -2) 
are 

( 0 ;  2,0,0,0,0,  0 ;  -2), ( 1 ;  , , , - 1 , - - 1  - 1 ,  ( 2 ;  0 ,0 ,0 ,0 ,0 , - -2 ;  0). 

By means of the transformation Tl,SR, these points become recognisa,ble as the vertices 

of hy, 2 4 2  (6.23). 
Now, by 8.15, 

h e  = (SA),; 

and (by 8.9) (SA),?,is bounded by a,,,-, 's and (PA),-,'s. For the purposes of 6.1, we 

need only consider the (PA),-,'s. A typical bounding (PA), 2 4 2  or hy, 2 "'2 of 
the hy, 2 1 / 2  9.65, ha.s the vertices 

which, by the reverse transformation R-lST,,, beconie 

These points, along with 9.64 and certain other points from 9.63, make up the complete 
sets of vertices 

9.66 (2, 0, 0, 0, 0, 0 ; 0, -2) and (1, 1, 1, 1, -1, -1 ; -1, --I) 

of a (PA), 2\/2 (obtainable from 9.41 by nieans of the transformation U,'). Hence 
the points 9.63 are the vertices of (SA), 2 4 2 ,  of which a typical bounding (PA), 2 t / 2  
has the vertices 9.66. 

But the points 9.66, along with 9.62 and certain other points of the infinite set, 9.6, 
make up the complete set of vertices of that (PA), % .\/2 which is obtained fro111 0.31 by 
means of the transformation UG*. Hence the points 9.6 are the vertices of (SA), 2 d2. 

The existence of 

(SA), or 331 


is thus established. That of 
133  

follows by semi-reciprocation. There remains now only 2,,. 
VOL. CCXX1X.-A 3 E 
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9.7. Since T,,ST,,, a syrnlnetry of (PA),2 4 2 ,  trailsforins 9.61 into z, + x, = 0, we 
have the interesting fact that the section of (PL4),22/2 by the 7'-space x, 1-x, =. 0 is 
another (XA), 2$12. 

9.8. The corninon -part of these two (MA), 2d2's,  i.e., the seution of (PA), 2 4 2  by 
the 6-space 
9.81 XI + J2 + x8 + X4 + %5 f L6 = 0 = X7 {-X8, 

is a degenerate seven-dimensioaal polytope, which we shall identify with 

(IA), 2 4 2 .  

Of its vertices, which are equivalent by means of the symmetries 

those distailt 32/52 from 
9.82 (0, 0, 0, 0, 0, 0, 0, 0) 

a re 

'3.83 (0, 0, 0, 0, 0, 0 ;  2,  -2), (1, 1, 1, -1, -1, -1 ; 1, -I)> 


(2 ,0 ,0 ,0 ,0 ,  - 2 ;  0,O). 

These 72 points, which will sooil be seen to be the vertices of 

are equivalent by means of the bifid reflections 

(Note that they, unlilte 9.41, possess also the syrnrnetry T.) 
Of these poii~ts, those distant 2 4 2  from 

9.84 
are 
9.85 

The transforlnatioli K makes these 20 points recopisable as the vertices of 

t2a5 2 4 2 .  

Now, by 8.16, 


t2., = (IA), ; 


and (by 8.9) (IA),,, is bounded entirely by (PA),,-,'s, these being all equivalent. A 
typical bounding (PA), 2 \/2 or t , ~ ,2 4 2  of the t,a, 2 2/2 9.85, has the vertices 
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These points, along with 9.84 and 

(which also occur among 9.83), make up the complete set of vertices of a (PA), 2 d 2  or 
hy, 2 4 2  (obtainable from 9.45 by means of the transformation U,'). Hence the 
points 9.83 are the vertices of (IA), 2 4 2 ,  of which t,his (PA), 21/2 is a typical boullding 
figure. 

But the vertices of this typical bounding figure, along with 9.82 and certain other 
points satisfying 9.81, make up the complete set of vertices of the (PA), 2 d 2  which 
we obtain from 9.41 by means of the transforrnstion U,'. Hence the infinite set of 
points whose eight co-ordinates, all even or all odd. satisfy 9.81, are the vertices of 

( 1 4 7  2 4 2 .  
Thus we have established thc esistence of 

( 1 4 7  or 2, , .
the last of the polytopes 7.45. 

9.9. By applying certain other symmetries of (PA),2 4 2  in the way in which 
T,,ST,, was applied in 9.7, it is found that there are in all 1'20 sections of (PA),2 d2, 
through any one vertex, which are (SA), 21/2's ; namely, one section for every pair of 
opposite vertices of the vertex figure, (PA),. The 7-spaces of these sections are as 
follows :-

(I)  xl + x 2  + $3 + X4 + X5 + X6 + x7 + xf3 = O,[ 28 like xl -b x, + x3 + x4 + x5 + x6 - x, - x8 = 0, 

35 like x, + x, + x3 + x, - x5 - x, - x7 - x, = 0,4 28 like x7 - x, = 0,

[ 28 like 2, + X, == 0. 

These 7-spaces may be called " primes of symmetry " of (PA), 2 d 2  or of (PA), 2 4 2 .  
For, the reflections in them, viz., 

S, T,STq, T,,;,ST,,,, (ST,)" or (ij), (ST,)2S or ('G)T,, 

are symmetries of the polytopes, 

10. nine-dimensional Co-ordinates. 

10.1. Consider the infinite set of points whose nine Cartesian co-ordinates are mutually 
congruent modulo 3 and add up to zero. These points, lying ia  the 8-space 

can be identified with the vertices of 
(P*4j,3 %'S 
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by applying to them the transformation 

.% QT,, 
where 

(- 5 -1 -1 -1 -1 -1 -1 -1 

1 5 --1 -1 -1 -1 -1 -1 :-1 -1 5 -1 -1 --1 -1 -1 1-1 -1 -1 	 5 -1 -1 -1 --1 l 
10.12 	 n = $ -1 -1 -1 -1 5 -1 -1 -1 2 

-1 -1 -1 -1 -1 5 -1 -1 2 

-1 -1 -1 -1 -1 -1 5 -1 2 

-1 -1 -1 -1 -1 -1 -1 5 I 
[ 2 2 2 2 2 2 2 2 2 J 

and T, changes the sign of x,. (It is easily verified that satisfies the conditions i~liich 
make it n congrue?at transformation.) 

Since we are only considering points satisfying 10.11, the relation 

implies 
Tx',. = :y (ax,+ zg) (Y < s), 

10.13 	 ;A (2x8 + x9)7 
The general point 

3 ~ 7f z, 3 ~ 8+ Z> 3y9 f Z) 

of the set considered, therefore becomes 

10.15 (291 + z', 29, + z', 29, + x', 29, + x', 2y, + z', 

where 

The sum of the new co-ordinates is 

Thm we have obtained a vertex of (PA), 2 4 2  as given in 9.1. 

Conversely, if the point 10.15, satisfying 


Y1 '5Y;!$- Y.7 + Y4 YR+ Y7 f 9'8 = 2 t 
Y 5  
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(which makes the co-ordinates add up to a multiple of 4), is a general vertex of 

(P44.)92 V'Z)  

we can make it correspond to the point 10.14 of the original set (10.1)by putting 

The identification is now complete. 
10.2. By taking those points of the set 10.1 which are didtant 3 $2 from the origin, 

we obtain the vertices of 
3 4 2  

in the beautiful form 

Thence we obtain two different sets of' co-ordinates for the vertices of' 


(PA),3d2, 

namely 

( 2 , - 1 ) - - 1 , - 1 ) - 1 , - 1 ;  2 )2 , - - I ) ,  ( l , l , l , - 2 , - 2 , - 2 ;  l , l , l ) ,  

(0, 0, 0, 0, 0, - 3 ; 3, 0, 0) 
and 

10.22 	 ( 0 , 0 , 0 , 0 , 0 , 0 , - 3 ;  0 ;  3), ( 2 ) 2 ) - 1 ) - 1 ) - 1 , - 1 , - 1 ;  - 1 ;  2)) 

( 1  l , l ) l , l ,  -2, 2 2 1 (3) 0, o,o,  o , o , o ;  - 3 ;  0). 

Trivially tranAforniing* the former set to  make it more symmetrical, we have, for the 
vertices of 

(PA), 6 4 2 )  

10.23 (5, 1 - 1  - 1  -1, -1 2, 2, - 4 ,  (3, 3, 3, -3, -3, -3 ; 0, 0, 0), 

( l , l ,  l , l ,  1 , -5 ;  4, -2, -2). 

Proceeding one stage further, we get the vertices of 

(PA),3 d 2  
in the alternative forms 

10.24 	 (1,ly1)1, 1, -2 ; -2, -2 ; I),  (2) 2) -1, -1, -1, -1 ; -1, -1 ; 2), 

(0, 0, 0, 0, 0, -3 ; 0, 0, ; 3)
and 

10.25 	 (0, 0, 0, ; 2, -1, -1 ; 1, l7-21, (1, 1, -2 0, 0, O ; 2, -1, -l), 

(2, -1, -1 ; 1, 1, -2 ; 0, 0) 0). 

* By means of 2U& in the notation of 10.6. 
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The latter form (10.26) is of special interest, as it corresponds to Mr. P. HALL'S notation 
for the twenty-seven lines on the genera,l cubic surface. For, if we associate the nine 
co-ordinates wit11 the symbols 

and accordingly write (e.g.), 

then the 27 points 10.25 are represented by the ~ymbols 

(where i, j, k = 1, 2, 3 independently), in such a way that any two of the points are 
rnutually distant 6 or 3$/2 according as the number of the letters s, t , 1 1  which occur with 
different suffixes in the two symbols is even or odd. For instance, 

are all distant 6 from sltl ; while the three points specified in 10.26 form a tri:lngle of 
sides 3 V/2. 

10.3. In 9.9, we saw that (88),can be obtained as the section of (PA), by the 7-space 
through any vertex perpendicular to any diameter ( i .e.,  join of a pair of opposite 
vertices) of the vertex figure at  that vertex. Of such 7-spaces, 120 pass through the 
origin. According to the co-ordinates 10.21, these consist of 

84 like xl +x, +x3 = 0, 

36 like x, - x, = 0 

(10.11 being understood). In this manner, we obtain the co-ordinates of 

in various ways as a section of (PA), 3 d 2 .  
1119.8, uTe saw that the section of (PA), 2 4 2  by the 6-space 9.81 is (IA), 2 d 2 .  It 

follows (by applying T,,,,, in the notation of 9.2) that the section by the 6-space 
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is another (IX), 2 d 2 .  Hence, by 10.13, the section of (PA), 3 2 / 2  by the 6-space 

Taking points distant 32/2 from the origin, we obtain the vertices of 


(IA),32/2 

in the form 

((3, 0, -3 1 0, 0, 0 ; 0, 0, o), (0, 0, 0 ; 31 0, -3 ;0, 0, o), 
10.32 7J (O,O,O; 0, 0,O; 3,0, -3), 

10.4, In 10.2 we considered those vertices of 

which are at  distance 3 d 2  from the origin. Let us now consider those which arc at a 
few greater distances. 

Distant 6 froni the origin, there are 2160 points-

10.41 4 1 1  1 2 2 2 - 2 ,  (3, 3, 0, 0, 0, 0, 0, -3, -3), 

(2, 2, 2, 2, -1, -1, -1, -1, --&I# 
Distant 3 4 6 ,  there are 6720-

(5, 2, 2, -1, -1, -1, -1, -1, -4), (4, 1, 1, 1, 1, I ,  -2, -2, -5), 
10.4'2 

(4 ,4 ,1 ,1 , - -2 , -2 , -2 , -2 , -2) ,  ( 2 , 2 , 2 , 2 , 2 , - 1 , - 1 , - 4 , - 4 ) ,  

(3, 3, 3, 0, 0, 0, -3, -3, -3). 

Distant 6 d 2 ,  there are 17280 +240-
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and 
(4, 4. 4. -2, -2, -2, -2, -2, -21, (6, 0, 0, 0, 0, 0, 0, 0, -GI,  

The last 240 points are obviously thc vertices of (PA), 6'%/2, being the same as 10.21, 
only doubled throughout. 

It is easily proved that the points 

are respect,ively the vertices of 

Since tliese polytopes all have precisely the same symmetries as (PA),, it is only necessary 
to identify one vertex of rac2i. 

By 7.8, the centres of the 4,,'s (p,'s) of 421 (= (PA),)are the vertices of 2,, x (== 2,, x ). 
,4 typical p, 3 2 / 2  of (PA), 3 \/2 (as given in 10.21) has the vertices 

Its centre, 
( l , l , l , l , l , l , l ;  -2; - 5 ) + ,  

after multiplicatiorl by 2, occtirs in 10.41. 
Similarly, the centres of the 4,,'s (a , '~)of 4,, are the vertices of I,, X .  

A typical cr, 3$/6 of (PA), 31/2 lias the vertices 

Its centre, 

after multiplication by 8, occurs in 10.43. 
Finally, by the definition of truncation, tlie centres of the edges of (PA), are the 

vertices of 
4 (PA), x. 

A typical edge of (PA), 3 4 2  is terminated by the points 

Its centre, 

after multiplication by 2, occurs in 10.42. 
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10.5. The followii~g tablc exhibits some particularly interesting sections of (PA), 24 2  
and of (PA), 3 :--

I I (PA), 2 4 2  (PA),3 d 2  
X I  = x2 1 1  ('"18 d2 (SA),3 2/2 
x, = X z  = x3 (IA)72 4 2  ( 1 4 7  3 4 2  
2I = x  2 = X  3 = X4 !as62 %/2 hs6 3 yf2 

x1 = x2 = x3 = x4 = 11;& a4h 2 4 2  a4h 3 4% 
x1 = x2 = x3 = x4 = x5 = x6 [azh, SzI2 2/2 [a2h,S 2 ]  3 4 2  
x1 = z2 = x3 = x4 = x5 = x6 = x7 ( a l T a o )  2 4 2  12
 ( a , 7 u o )h 3 4 2  

X I  = X z  = x; = = x5 = x6 =' x7 = x8 1 8,2 1/2 82  d2 
Here 

( X I  -Y,,) h 
stands for an i~lfinity of ( I ' l ~ )~ ' s  (isosceles triangles of sitles 1 ,  d2, d2)filling a plnlle. 
It can be obtained by unifornily conipressing a (3, 6) or a2h in the directioii of onc 
edge. 

The fact that correspo~iding sections of (PA), 22 /2  and of (PA),3 1 / 2  arc similar, in 
the linear ratio 2 :3, except in the last case (eight co-ordinates equal), is lncrely s 
consequence of 10.13. 

10.6. (PA), 3 4 2  clearly possesses 84 symmetries U,, and 84 symmetries V,,, definccl 
as follows :-

Utjkincreases the co-ordinates x,, x,, x;, each by 2, and dinlinislles the rcmainingsix 
each by 1. 

V,,, diminishes x,, xj, x, each by two-thirds of their sum, and diniiiiishcs each of tllc 
remaining six co-ordinates by one-third of the sum of those six. 

Thus U,J, is a translation (through distance 3 4 2 )  ; and V,, is the rotation (through 
angle x )  about, or the reflection in, the 7-space 

according as we are considering the whole 9-space or only the 8-space iu wllicli (PA), 3.d2 
lies. 

Let c, d, e, f,g ,  h, i , j ,  k denote all the numbers 1,  2, 3, 4, 5, 6, 7, 8, 9, arranged iiz 
arbitrary order, and let (ij)(as usual) den0t.e the transposition of the two co-ordinates 
x i  . The simplest relatioils between our new syiilmetries are as follows :-

10.64 Vcdk V ~ g h'-- V f g h  Vij~. 

Note that U,,, UfqlL 3.
U,,, simply illoreases x, and diminishes a,, cacli l ~ y  
VOL. CCXX1X.-A 3 Y 
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(PA)Lj2 b/2 and ( PA\ 3 \ I2  : 
~ ~~ ~ - - ~ .- - -- - -~... 

Ur;&It- j 1 7 i j / c  

U, :R-I Ii C,, 

u,U$I I LJiS!] 

u, li,,, 

UjB uz; lJ,j<,, 
13 [Y,-? I(,? 

c ' i ,  ! ( I J ,  
( i s )  i

I 
( i s )  

S (sn) 
'.FLhSY.lt6 (2'9)I 

Tijf i l l i j  V ,, 

1',,L, STG,,,= [gqh . ijlcs] ITijk 

( i8 )  ViH9 

(ij)T, 'V,j,i 
r 1
1, (+?'I Yj! ,  
Ti, I (is,)ITi8!) 
ST I 

1 VsTa\Ti.:!j v3.46 V 4 b 7  TT6(;1 VTia 

Tllc Inctors in this iast jxoclnct ol  rcl en 1''s arc all perinutnblc, by 10.61, bil~ceevery 
pail. of them lmve just 01lc ~ ~ ~ f f i ~ - i i i i i i ~ l j ~ i '  tliai V,,, appearsill coil i t~l~li .  Lt is 111te~esting 
as rill edcns io l~of the bilicl reflcctibr1. 

In verificatioil of 9.22, n-e have : 

JI-~~PIIi,j < 8, 

{(%9)(ij)v,], I3  = ( ~ ) j  . (89) jr (89) . vllJ(89) I7 , c l  

= (9). VtI8. ITtjY 
= (ij), 


and wlleli j= 8, 
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10.8. Let, a, b, c be tl.lri)e different nrin~bers among 1 ,  2,  3, 4 ,  5 ,  6 ,  7 ,  8 ,  9 ; d,  e,f, three 
different numbers among 1 ,  2, 3, 4 ,  5, 6 ,  7 ; g ,  h ,  i , three different numbers among 
1,  2, 3, 4, 5 ,  6 ; j, j', two of 1, 2 ,  3 ; k ,  k', two of 4, 5, 6 ; 1, 1') two of 7 ,  8, 9. Also 
let T denote the reflection in the origin (i.e., %he simultaneous change of sign of all 
the co-ordinates. 

With this notation, the chief symmetries of the polytopes under consideration inay 
be tabulated as follo~vs :-

Pol~ t o p ~ .I Co-ords. Symmetries. 1 No. of cases.
I I I 

---- - - - _ - 1- / -_ -- - - I -- --- --

(PA) ,3 112 
I

' 10.1 i w),JTmt T a * c  36 4-84 4-8 t  

(PA),3v'2 10.21 (ab) ,V n b c  36 + 84; 

3 1 / 2  10.22 (w,Xi?f,v f 8 9  21 +sa $ 7  


( P A ) , 6 1 / 2  10.23 (gj l )?(Lit),V ~ I ~ L  15 4-3 + 45 


( P A )3 i.2 10.24 (ghl, &ht, v780* 15 -t20 + i
C(PA)3 4 2  
1 

10 - 25 1 ( j j l ) ,(klct), ( l J f ) ,  VJ,b~ 9 $27 


10 32 rI? 9 -t27 -1- 11(IA), 3 a/2 ( j j " ) )  (kk ') ,  (lJt). JTJT[) 
r i(U),3 \ i2  10.31 

/ I  
( I ) ( 1 ( 1 )  , 1 ,V 1 9 +17 + l +27 

10,9. Below are summasized the most convenient co-ordinatcs for each of the pcly-
topes 7.45. 

(- (0 ,  0 )  0 ; 2,  -1) -1 ; 1,  1,  -21, 
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( (2) 2) 2, -1) -1) - 1 9  -1) - 1 3  -I), 

4,, 32/2 = (PA), 32/2 : J (3, 0, 0, 0, 0, 0, 0, 0, -3)) 
(1) 1)1)1) 1) 1)-2) -2) -2). 

6,, 3 d 2  = 9 co-ordinates, mntally cong~~llcnt (PA)n31J2 : ~nodlllo 3, s1n-u zero. 

2,, 32/2 : 	 The same, but with 4 or 8 of them odd. 

9 	 co-ordinates," mutually congruent niodulo 3, sum 
zero, satisfying the following further conditions :-

(u) 	If the co-ordinates are divisible by 3, then the 
three possible residues n~oclulo 9 (namely 0,3,  6) 
all occur (for the co-ordinates of each such point), 
one of them only once and the other two four 
times each. 

(b) If not, then the residues modulo 9 either are all 
equal or take one of the following forrns : 

(4" 16), ( 1  7 (73, 47, 
(5" 2'), (2" 89, (SO, ti3), 

(7" 44 13), (Sn, s3,25). 

* $'or these co-ordinates I am indebted to MR. P. D ~ TVAT,^ 
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3,, 2 2 / 2  = (SA), 9 2 / 2  : 8 	co-ordinates, mutually congruent modulo 2, sum 
zero. 

The same, but with the further condition that tho 
residues modulo 4 of the eight co-ordinates conlsist of 
two tetrads, such that the residues for each tetrad 
are equal anlong themselves, those for different 
tetrads not necessarily being different. (Thus the 
residues must consist of either eight 0's) 1's) 2's, 3's) 
four 0's and four 2's, or four 1's and lour 3's.) 

2,, 3 .\/2 = (IA), .72/2 : 9 co-ordinates, mutually congruent modulo 3, falling 
into three definite triads (the same triads for every 
point) each with surn zero. 

These co-ordinates can be verified by the method of 6.1, the work being simplificd by 
the consideration that, if p # q,  y,, possesses all the symmetries of n,,. 

11. Gro~cps Genet*nfecl h!y Y?oo Operations. 

11. I .  The gronp of symmetries of each cxist9n-t polytope of Ilze .form 

except 

can be generated by means of two or tllree special synzmetries. t ~ i ~ o  or three accorciing 
as tllc polytope is finite or degenerate. \Ve shall prove this by consicieriilg each case 
in detail, with the help of the following two general principles. 
11.11. If certain given symmetries of the vertex figure ( f t- I),, of a given polytope 
9zP, are kno~v:i to generate the whole groap of sy~nmefries of (9% - I),,, and are expres- 
sible in terms of certaii~ symmetries X, X', etc.. of ftP,; and if X, X', etc., suffice to  
cl~angeany vertex of 72,, illto any otlier ; lllcn X, X', c-lc., will g~neratc the whole 
group of symmetries of rz,,. 

1 1.12. If two symmetries, X and X', of a given polytope which differs frorn a second 
given polytope only by lacking a certain symrnetry V of pwiod 2 i i . e . ,  such that Y2 = I),  
are known to geneisate the whole group of symmetries of thc f i~s tpolytope ; and if X, 
of odd order (say h),is permutable with Y ; then (since (XSr')lL= Y a,nd (XU)"iI = X) 
the two synirnetries XY and X' will generate the whole gronp of symn~etries of thc 
second polytope. 

11.2. The group of symmetries of 



404 H. R. M. COXETER ON POI,YTOPEf3 WITH 

being simply the " symmetric group " on m + 1 symbols (which can be taken t o  repre-
sent the vertices), is generated by any two cyclic permutations whicli " overlap " (i .e. ,  
which have at least one symbol in common, the cornnlor~ symbols, if more than one, being 
arranged consecutively in the same order in the two cyclic permutations) ancl together 
involve all the symbols, tvitllout both involving itn odd number of symbols. Thus 
the simplest generation is by 

11.21 (12 .. ) and (m nz -/- I), 


where ?. = nz or m + ? (cither, equally well). Anothcr suitable p i r  of symmctrics is 


1 1.22 (12 , + ancl (71% -- l nz?n -+ 1): 

Tlie truncation 
Onp -=- f , , ~, 

Jlss precisely thc same grotrp ol symmetries as x , , , ,  cxcop-iw h ~ nn =p, i.e., m =212 +1.  

Onn = ti,'27i 4-1 

possessps in acldition tile reflection in its centre, n-hicll vTP~11~211 By 11.12 ant1call T. 
1 121, its group of symmc-t,rics is gencratec by 

11.23 ( 2  . . . 1 '  and (m, 971, -k 1). 

(~vliicllis the " direct procluct " of sy rn~~ic t~ ic  ong;.oupq g? -k 1 symbols a, anti 

cj -1 1 sy~lrbolsb,) is generat ed by 
11.31 . . . cc,) (b, b, , ,) and (b1b2 . . [ I ? )  (olj ,.,), 

" -iii- ')
lllnxn~q" tiir grcntcst ii~t,cgcrnot' greater t l i i ~ r l

~ I L." 
: / -2.1 2 
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Por, callii~g tliese two operations A and B, we have 

,li= (bqbq+,) itnd 13' = (a, a,+,), 

,P+'== (ala, ... a,) and Bfl = (b1h2. . . bJ. 

l 'l~usA'"' and Ks give all the permutations of the a's, while B'+' arid A' give all tlie 
~)erinutationsof the b's. 

If p and q were equal. we sllould require a further operatloll (of period 2 ) to  interchange 
the a's and b's bodily. 

11.4. The group of symmetries of 

is generated by the permutations of the vertices of olio bouncliug x, , , - ,  . togetllcr wit11 the 
yefiectiou (TI, say) which siiriply interchallgcs one pair of o1)posite vortices. By 11.12 
allcf 11.d2 ,  the group is tliereforc generated by 

~ v csliall use tlie co-ordinates 6.22. of 1111:Lct (12 . . . r )  denote the cyclic per~nutat~ioti 
co-ordinates J,, x,, . . . x, ; and let Ttj subtract the co-ordiiiiites L ~ ,xj each fro111 1.  
I Tlhen clearly the group of symmetries is generated by 

11.42 (12 . r )  and ( m - 2 m - 1 m)T,,, 

wliere r is the same as in 11.41. 
When m = 6, there is an interesting alternative generation. Lot 

the group of synlnldries of 
(1'Lq5==12, = ?by5 

is generated by 
11.43 (12345) and 1241. 

11.5. Tlle 1,riiicil)lc11.11 rlow 1)soues that the group of syln~netcies 01 



3 3 2  3
'2$ .-' r3 

- 4 . 2+. , = a 0 
Z d o z  
L- c.,:..=
Q + 
m .? a 

. 2 q  2 
- 3 s  - 0G

SO 

k+* I . X 
EYjl3C3 1) 

C5 4a m T 3
.? t 0 k 
")n i t io  

% ; ? A  i 

2 a r -
m )Q-; ." 3
m &  4 + 
O + - J L Q 


i-s - 2 -I -sm.3 4 
a 


; s 3  a 
.d - F : 9 -

m 3
+ ? % i  
L ! - - 4  5.z i; gid

?1: 0 --- q- 2; A 3 2  

$ G z d $ -. - 0+ 4  4 "  

<-. 

2 

$ 2  

u. - r-- p ;-
i.4"- .f;l s z . g  

. LO - 5 ~ 2  

n 6 ,2h &  2 2 
+is&P g
M s -
& .g $i- - R-J 

" c.D 
0 - 


+> 5 .,2 5  
g g ds .5

F=r 6
* m a  4 ca . g
425 b . s  $ g 

2 3  
M 3.2
z z s - g $  

i-s G 0-1 

G 2 a % z
,d 5 a - 0 



t o  ille sevciltll alid ciglllh, and finally divitje throughout by 3. Explicitly, in virtuc 
oE 10.11. thc re1at'~o1-1 

The symmetl.ies II.(il become (by the same transformation) the  15 -t1 + 20 
symmetries, 

of the 
(PA), % ,d2 

tvl-lose vertices are 9.43 ; ( i j )beiiig a tcansposition of tl-re suffix-nilithers, (78) tllc trans-. 
position of a and b, and [fgh . jjk] the operation 9.44. 

The details of the correlation are as follows : 

Vertices. 

(ii0 
(klc') 

(78) 

(79) 

(89) 

v,,, 
Vj,, 


j i j k 3  

VOL. CCXX1X.-A 



Here 
j ' " UL'C 1 ,  2 ,  3 in any order, 

and 
7 ;  ' ' arc 4, 3, 6 in auv order. 

JVe have seen that tlie whole group of syrnmciries of 

is generated by 11.54 and n fortiori by 11.62. Hence it is also generated by 11.61, and 
consequently by tlic t ~ o osyrnrnctrics 

and thenoe, by 10.63, all tlle transpositions 

which in turn give the rest of the V,,b,"s. 
Incidentally, it Follows that the group (of order 6 ! P, = 51840) of auton~orpliism 

of the 29 lines on the geneital c ~ i l ~ i c  Forsurface, can be generated by two operations. 
details, see the Appendix. 

11.7. Since 
(1234507) ;(12) (23) (34) (46) (30) (67) 

and 
(9)= (ST,3)' 

and 
[1357 . 24681 = Yl3TS7STP3TS7, 

it follows (by 11.1 1 and 11.52) I l~a t  tlie group of syin~netne~of 

is generated by 
8 and Ti] ( i , j = 1 , 2 , 3 , 4 , 5 , 6 , 9 , 8 ;  i ~ j ) ,  

in the notation of 9.2. 
The correlation 10.7 cl~alrges these particular symmetries ilito 

(89) and (ij)Vij9. 
But, by 10.63, 

(G) = Vghi Vghjvgiii. 

Hence the group is generated by 



tvizcrr tlir suff ix-nr~n~bc~~9 ma) hc ~xc.it~iic.,l.i i l  Tii i i ! ib 01 0 4 .  , , : 1 1 1 ~ *  i r  iL$;;PIKP~*:I~( ~ r l  
I,:s i,lie f tvo SyI?? in('; i'ic ,i> 

1 8.71 2 4 , t i i i l  ?j7, 

For the degclieruto 
(TA)?I-- 22s, 

(It Qeeuispossible that the 
, 
" 
,T " but illis ha? r~ntbccn proved,)is Ilcre unaecess~ilv~r, 

2,, and I,, 11ovci-he satrze symtnetuies (1  1.32) as (T',A), -= s,,. 
241 7, 3 % ~  7. - >  .. ( L  i .71) .. ( I ' i ? )8  

251 ,, .. .. ( 1 1.72) (t3Ak)9 521..? s s  

By 11.11, $he group of symme~ricsof 

is general ccf by 11.52 along with a sui~nhletrtllslatiorl, in fact by 



Consider the (SA),8 a / Z  1%-hos~vertices have eight co-ordinates, all conyuent t o  O 
or t o  4, ~liodulo8. and :dt i ing up to zero. 'Pile cent-iAeof a, typicd bo-rrnd~ng u7 8?/2 iq  

11 .i;L ( i . l , 1 2 1 . 1 , 1 s l :-7). 
Irn~virt tie of the :;r.nirsrctricc; 

( 1  234567) aucl TZSj,gTiSjS itnd Tl It4T1957, 

Illis poi~ltgives 1,isi. t o  -i 11eto1ality of pointsmho-;~oiqllt co-ordinates, nilding n p 1o zcro, 
Eiav~,as 1'e~jd11(1srnotiulo 8, citbcir eight I's, 3's, 5 ' ~ .7's, four 1's anti four. 5's, or. four 
3's nntl roar 7's. Since tbesc points possess the :~citlitiolml synunciry 'I"* i:vhicli refled s 
in the point 11.81, they r ~ ~ u s t  Y (in facl, of I,, 4 \/'2).IIC the vertices of I,, 

Hence the group of syrnn1etrie;s of 
133 

if; generated by 

1 1  .!I2 (12343(i7) T' n1:d T I  T and T, 337 It4TI357. 


t 112.1l o!,i>l [an, K) , ,  ~ ( ~ 13 

will^ the  euist,cuci. condii ion 7.32. 4pot.  othcrwiho, 1,1>cS ~ I I I ~ ~ C R ~  figure13o~sildev t ~ t e x  

.irilic,h tloi~snot reduce to a prisin wii 1~ o i~ lytwo const,;t u c i l t ~is 

ancl 
12.13 
In particular, 

Thus the orlly riem polytopes which arise in tliis wag are 
----- -- . - -- 

12.24 

Ozz, 

1 0 3 2 1  

0 4 2 ,  
\ 

I 0 6 2 ,  
I 

0 3 8 1  
I 

0 2 2 2  

of svl~ichthe last Illree are tlcqcncraicl (by 7.46). 

* In tcrms of the  ulual symhols, 

T' = (I'~~U.~U:~)' R-ITR ( ~ ' ~ ~ u ~ l c ; ~ ) ~ .  
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As in the case of m,,, the number of dimensions is 

12.2. By 7.6, tlie number of vertices of Onp,is 

12.21 (o I? ,~ )  = [ f b  21 q j  
Also, by 4.6, the elements of 

[an, aqj 
consist of 

(n +I ) ( p '+ l  ) (q ' + ~) LC/.,,, up,, o',, ]~s, 
for all l t l ,  p', q' satisfying 

( 0  6 n' I= n, 

Hence, by 2.52, the  elements, other than verticcs, of O,,,, consist of 

As in the case of fig,, we fix the order of the suffixes so as to distinguish between 
equal elements (such as O,,, and O,,,, r # s) whicli are of different type. In tlie case 
of O,,,, equal elements are always equivaleut, but the division into types indicatcs that 
various kinds of elements can bc divided uniquely into three (indeed the t,cl.,'s into six) 
congruent sets. 

By 2.41 and 4.71, the order of the group of syininetries of On,, is 

12.23 gm = -tI ) !  (p  + I ) !  (q + I ) !  [fiP13], 
where 

A = 1-tspq+ E p n  ~ f i p?, $ 2 ~ ~ ~ Ep0 E ~ O  &no Ertfi &PO 2',,0 t p O *Epn &fip --

12.3. We saw in 7.36 that 
12.31 	 O n p q  = 'n"pg* 

There are, by 5.8, other truncations 

for all 

and also (since all (n + 1)-dimensional elements of n,, are of type no,) for 

12.4. One naturally tries to obtain some sort of higher truncations by t,aking for 
vertices the centres of all those elements of 	 np,which are of the same type 

( p f -L- q f  > 0).9zp.,' 



412 H. 8.X. COXETEft OX POLYTOPES I'i'ITK 

The rcsults nsc ss follo~vs:-
If q' = q vrt obtain i,_,l, _ Ip,,,(b j - ~ 1 1 , .t11:~orernstated i ~ t ,t llc c~zciol 7.8). 

Similarly, if 1)' - p wi-e obtain i,_.,,-,g,,. 
But if p > p' t. cf' < 7. the resulting polytope is not  nn~form,if s cciecs I)ci~ry, 

r~rieyusl. (The c3se p' =y'- offers a nen- Gelti for researrh.) 
To take n very simple examplr, conside~s ihe edges of t h e  tliangulnr prisnl (-- 1),,. 

Tl~cceul-trvs of che lateral edges, ~vhich are of type (-I),, (since tlixey clo not Lolong 1 0  

t11~base (-l),,,),are the vertices of f,2, (-,, K,. But tllc cc1its.c~of fllc b,jsa1 et3;;rs,; 

of type (--I),,, are tl-re vertices of the thiv triangular prislrl [a,,', a,]. 

12.5. By 7.72 , if 1 2: 1%. t,~,,, has ( ' ; i t )  
[(!I - 1 --

y1 
1)p 41 

r e By 5.8, its vertex 

figure is 1 K ~ .(12 - L - l )pg] .  

Bur, by 7.73: t-,16, has (p4-1 )  (11 + 1 )  
12 -k 2 

vertices. Its vcrter fiqlirc i3 

Tlirse facl s arc sufficient; to detcrminc, all the ni~me~icnlproperties of 

t l  n , ,  ( 1  5 77 -1-1). 
In particular. it is bounded by 

(12 4- 1) 
xn 

L ~ z  
-

P 
1 
g! 

11d ~ E - I(12 - 1 ) P 1 9 ~  

and 

12.6. In the following tables, the elements of each polytope are given in a column. 
The nlunbers referring to equal ele~rlents of different type are bracketed. In  12.7 a,nd 
12.8, the type-symbols are given imniediately after the numbers ; in 12.9 they appear 
at  the ends of the lines. In 12.7 and 12.8, the numbers ullacconlpanied by type-symbols 
refer to  a's in the first category of 7.5 ; in 12.9, such xiumbers refer to  vertices (i.e., 
every line ends in a type-symbol except that headed " a, "). 

Everything in these tables is deducible from 7.4, 7.7, 7.0, 12.2 and 12.2, the vnliles of 
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112.8. 	 TABI,Eof special 

Kame : 2 ,, (PA), 
I 

l Z 2 = ( I )  
1i 3,,=(PA), 

8 	 II 
1 I I 

/ Ordcr of &loup : ,51840 103iiXO 2903040

1 - - ~ _ _-I 

I1 Xo. of ctirnenblons : 6 I 6 I 7 
I I 1 

I1 (Vertices) x ,  

I (Edges) x ,  

(PA), 	== 221 

1 (IA), = 1 2 >  
i ~ x; 

! F 7 

I 
I hy, 

i 	 (PA), -- J,, 

(SA), =: 2 , ,  
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12.91 ANALOGOTJSTABLEfor Olllr= Zay,&+3. 
. - ~ ~~ -- - -. -~ ~~ -- ~ 

! 
I 
! 
I 

Na,ine : 

Order of group : 

I : 
i I 
~lI :  

0,111 

. 

( 1  4-2c,,,) 2"t"(1~ + 3) ! / / 

/ "  

/" 
'/' ~ 

I 

1 -.__-.. 

No. of clinlensions : 

I I 

11 + 3 

-/ 

/ 

I1 1 1 - ..- /' . -.-

I 
I 

(Vertices)K, A!' ( ) I  $-2 )  ( i e  + 3) I1 
i 0lc'00 

I 
I ' 

: 
0 1 1 ' 1 0  

! ~ 
~ ! I  

91'-+3 

11' + 3 

' I
1 
i 

O,,,ll 
! 

I I 
~ - - - -  

On the Gr'e?~eralion of tlze Ur'otcp of the Liraes of a Cubic Surfuce by  2'wo Oper'atiotzs. 

13.1. The group of symnietries of (PA), is simply isomorphic with the group of auto- 
morphisms of the lines on a general cubic surface. For, there is a perfect correspondence 
between the distances occurring among the vertices of (PA), and the intersections 
occurring among the lines. This may easily be seen by comparing 9.43 with the 
ordinary SCJ-~LAFLInotation for the lines. 

13.2. It is lcnou~n* that the group is generated by the comk)ination of every per-

. . 
with any particular " bifid substitution '' such as 

(defined in 9.44), and therefore, for example, by tlie three operationb consistirlg of this 
bifid substitution and the two cyclic permutations 
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13.3. In  11.63, we found (in terms of a different notation) a generation of the group 
by two operations. It is of interest to  translate this into the familiar SCHLAFLInotation. 

Let 
j HO = V169, 

Then, since 

it must be possible to generate the group by rneans of Ho and o. 
13.4, On reve~lting to the SGHLLFL~notation, we find (by the correlation given in. 

11.6)-
Ho = (16) 

and 
o =XYZ, 

where X, Y, Z arc cyclic permutations, each of nine of the twenty-seven lines, na~nely, 

13.5. To verify that the group is generated by the single operation w, of period 9, 
and the transposition H, ; it is sufficient to express, in terms of w and H,, five consccu-
tive transpositions (thus providing all perinutations of the six sufiix-numbers) and the 
bifid substitution. Let 

H, = wlZHow9-* 

(the operations written to  the left being those f i s t  performed). We then have 

and 
[I35 .246] =HI. 

13.6. That w is actually an operation of the group may be directly verified. Let the 
lines 

a3, 628, bt? 

or any other t h e e  lines which occur in correspwding places in the three b1:ackets 
X, B, Z,written down above, be respectively denoted by 

Then the three sets, each of lliilc lines, take the form 
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If " -- ')means " intersects," (remembering that w" 1)the rules of intersection are 
as follows :-


:az - q w '  - <a1, 

,ZWt - , Z O z + 3  - , Z w z f 6  
, 
?"J - r j w l + 3  -yjw3+6, 
C W K  ,1:gk+S ,wlc+ii 

7 

E,,i ,CWi+l  

Wj- wj+2, 
< wk - <wk+*,  

.+ c , , i + ~  if A f 1 (mod. 9), 
C W i  ,twi+fiif p, 3 f 2 (nlod. 9), 
E w i - y j o i f v  if f 4 ( m o d .  9). V E  

(The numbers f1, f2, f4 are the residues, modulo 9, of the various powers of 2, and 
the notation can be further elaborated.) These rules, it is easy to see, give the 135 
intersections, which are therefore unaffected by a. So w belongs to the group, as 
required. 

13.7. The operation o may be regarded as a product PQ,in whch each of P7Q is of 
period 2 ; Q being in fact 

(16) (25) (34). 
This is seen at  once by applying to each of X, Y, 2; (of which no two havc a line in 
common) the obvious decomposition of a cyclic permutation of period 9, 

(123456789) = (17) (26) (35) (89) . (18) (27) (45) (36). 

13.8. It is manifest; that instead of w we may take any power of w,  say on, where t b  

is not a multiple of 3. Or we may take, instead of w, an operation obtained from it  by 
any permutation of the suffix-numbers 1, 2, 3, 4, 5 ,  6. 

13.9. By 9.35, 
[fgi .jhk] [fgj . ihk] [fgi .;jhlc];= (zij). 

Beside the equation 
H1 =. [135 .2461, 

we have also 
H3 = [I34 . 2561, 

Thus Inany identities, hesides those utilised in 13.5, are obtainable; as for instailcc: 

H1H4Ht =H,, 
H3H6H3 = (I2), 
(H3H6)3= 1. 

Also, from the equations in 13.5, it is clear that, instead of the part,icular tran~posit~ion 
(16), we might quite similarly have used (14) or (36). 
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TABLEof Symbols, 

together with equivalent symbols used by previous authors (see Preface). 

"A."-A. B. STOTTand P. H. SCHOUTE. 

" B."-E. L. ELTE. 

" C."-D. M. Y. SOMMERVILLE. 


(The method adopted is to go through the Latin alphabet, then the Greek alphabet, 
and finally to take miscellaneous symbols, brackets, etc.) 

-

1 Symbol. 

I -

l 
 I 

earn 
Yvt 


I gm- I ,  1 


93-76, 	 71 
I 


9-1 

I hym 

3 
 1 

%n 
 7.33 I I 

7.92 
 I 	

I (PA),, 


I s 
 I 

I srn 

1 

(84,

I (%A),= 231 


T 

1 = T ~ JTkz 

I 


r 	
" B." " C."Reference. " A," 

2.4 
3.7 
3.7 
6.2 HMm H M V L  

6.5 

1 
1 11.81 	 3.4 ~ 


7.77, 1I %(-I)n 

[nP 9.1


I o,, 

7.6, 12.6 1 


12.11 

8.1 

I 

9.6 
9.6 


9.2, 10.8 

9.2 
9.2 
5.1 
5.9 

- -	 -. IPA 

I I 


~ l 


IC'HmUI
h8,n1 h8,=a,h 

I,, 


1 (IA), 


6.9 
8.9 1 18.1 

11.8 

N (0,T) I 

II 
vi 2 	 1 

I 	 Ip1; I Pr: 
[{k}, a11 
 4.4

;:: 

P k  1'1" I I 

(72 ; k') 
I kt, 

{ki, kz, ... krn -1) 
 3.4 
I A,,
I 	 7c11c2... km+ I 
I 	 I 

I
II 

P v t  


8.3 1 

11.5 
11.7 1 v5, 

I (PA), = 221

' 	 (PA), = 321 


11.6 vz, I 

I 
(PA), = 421 

(PA), = 5,, 
 9.1, 10.1 I 

2.7 1 
v2,,,i 	 1 

i 	
IrRm, 9 %  


R 
 9.1 I 
I 

V12, 

e2(
9.1 

c e ~( ) ; ten ( t o ;  ( 1 "  
; cen-1 eqt.+1 ( 

t l (  1 ;  tn( 
I t ~ t l( ; tltn ( )

u%j 

I u ~ k ,v i j k  10.6 i 
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Table of Symbols-(continued). 

I1 Symbol. j Reference 

I(ar1-~  1 17 E - ~ q - ~  4.5 
Qn, I 3.53 


or,,& I 6.8 

; Q4 I 3.5 


I PriL 3.53 


1 p1; p 4  I 3.5 I 

Ynt ' 3.53 , 


I 3 T i  3.5 1 

3.53 1s,,t 
4.9 1 

Am-,,,,I 2.8, 2.9 

%PC? 4.73 


$4 

f'm-21, 7, 1 1.71, 5 61 

n-I 1.3 
nl,,,, rrl, ,  I 3.3 

4.11ml'np' 7.1- 3.61 
R 10.121 

' 1 2  I 7.45 
2 4 ,  

(21

(3, 4, 3) = tlp*-ol,,l 12.1 c24 


(3, 3, 5) : (5. 3, 3) 3.5 I C'G""  ; C, 20 


(3, 3, 4, 3) =- h a ,  1 6.6 1 NC16 

(3, 4, 3, 3) 3.5 NC,, 


(IP,oq) ' 5.7 1 

rt (21, 2 2  )' 3.6 IT,. r2 ,  ...I : 2 


(' 111~) 1.2 

I I 1.2 


0'1%) 1.2 
I I( - 1 1 7 , j ) - (3,) 1 3  

(y-ll,la-~ I )  I 2 5  

(y-7'19p~-f, 1i 1
7 , )  2 6  

1 1.5 I 

( ) X  1 1.7 

( )?1 

1 5 3  I 

I ( )+" 7.1 , 
I (G),. 1 8 2  , , [efgh .vkll i 9.34 I 
I [fgh . ijlc] 937
I [;I I 
1 6 2  1 
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Adjacent bounding figures ; 7.8. 

Analysis Situs ; 1.2. 

Angles ; 2.8. 

Antiprism ; 6.8. 

Archimedean solids ; pref., 1.9. 

a,-hedroid ; 6.8. 

BAKER; pref. 

Bifid reflection ; 9.3. 


,, rotation ; 11.5. 
,, substitution ; 9.3, 11.5, 13.2. 

Bitangents of plane quartic ; 11.5. 
Bounding figure ; 1.2. 
BURNSIDE; 13.2. 
CAYLEY; 9.3. 
Centre of sphere-analogue ; 1.3. 

,, uniform polytope ; 1.8. 
Circum-radius ; 2.7. 

2 ,  of hy,; 6.4. 
) ,  ,, prism; 4.2. 
, , ,, truncatiorl ; 5.4. 

Circurllscribing sphere-analogue ; 1.8. 
Consecutive vertices ; 7.8. 
Constituents of prism ; 4.1. 
Construction of ea, ; 6.9. 

,y prisin ; 4.4 
Content of prism ; 4.3. 
Continued fraction ; 2.8. 
Convex ; 1.1. 
Co-ordinates of a,h, ex, ; 6.8. 

,, hy, ; 6.2. 
5 ,  h8, ; 6.5. 

(IA),, (IA), ; 9.8, 10.3. 

, , (PA), ; 9.4, 10.2, 10.9. 

,) (PA), ; 9.3, 10.2, 10.9. 

, ,  (PA), ; 9.2, 10.2, 10.9. 

,, (PA), ; 9.1, 10.1. 10.9. 

,) regular polytope ; 3.8. 
, , (SA), ; 9.6, 10.9. 
,, (SA), ; 9.6, 10.3, 10.9. 
,, truncation ; 5.7. 
, ,  tl (PA), ; 10.4. 
> > Ids, ; 10.4, 10.9. 
,, 132, 133, ls2,  Zs1 ; 10.9. 

Cross polytopc (j3,) ; 3.5. 
Cube (y,) ; 3.5, 6.2. 

9 ,  

VOL. CCXX1X.-A 

I N D E X .  

I Cubic surface ; 10.2, 11.6, append. 
I Cuboctahedron (t,P,) ; 5.1, 6.6. 

Degenerate polytope ; 1.5.i 
 ,, prism ; 4.8. 
Degree of regularity ; pref. 
Diagram ; 2.8, 5.4. 

1 
I 

1 Digon ; 6.2, 7.9. 
Direct product of two symmetric groups ; 11.3. 

,, similarity ; 2.3. 
Du VAL; 10.9. 
Edge 

1; 
; 1.2. 

Edge length ; 1.7, 2.3. 
of reciprocated element, ; 9.3. 
of truncation ; 5.4. 

Elements ; 1.2. 

I ,, of x,fi., ex, ; 6.8. 
,, laym; 6.3. 

,, (IA),, ; 8.9.!
I 

1; ,, "(-1)s ; 7.9. 

I ,, ?IIl(, ; 7.5, 7.7. 5 ,  

1 ,, 3 ,  ~ 1 , 12.2.~ ~ ~ ; 

, ,, (PA),; 8.3,8.4,8.5. 
,, ,, prism ; 4.6. 

,, ,, regular polytope ; 3.8. 

), ,, truricatiorl ; 5.2. 
I 
I ,, ,, I I ; k i r  ; 7.1. 

> >  ,, l I L Z ,  2n1, ; 8.5. 
ELTE; pvef. 
Enantionlorphisnl ; 2.3. 
Equilateral triangle (az) ; 1.7. 
Equivalent ; 1.6, 3.2, 7.5. 
EULER'Stheorem ; 1.2, 3.7. 

1 Even permutation ; 3.6.1 
 Existence of regular polytopes ; 3.6. 

>, ,, ; 7.2. 
I 

3 > ,%1 I t 2 ,  2,L1, 1b.21 ; 9.5. 
I ,, l13,:3J1; 9.6. 
I >, ,, 2 z z; 9.8. 

Expanded K,,, ; (5.8, 8.9. 

Group generated by t\ro operations ; 11, r~ppe~ad. 

/ Group of sylnrnetries ; 1.6. 
I 

I1 :: ,, 

> I  

of K,, t7,ocm ; 11.2. 
,>[xp, a q l ;  11.3. 

,, ,, pnb ; 11.4. 
I >, 3 ,  ,, hyrn; 6.4, 11.4. 

3 1 
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Gro~ip of Synlnretrirs of (IA)., (IA),, (#A), ; 11.8. 

,, ,, , ,  ( w m ,  @A)n% ; 8.9-
,) j t  ,, nllq; 7.9, 11.1. 
,! 7 ,  , ,  Ovpq; 12.2. 
,, 3 ) ,, (PA)6; 11.5;11.6. 
7 ,  , ( ,, ; 11.5. 
) j  a ?  ,, (PA)S, (PA)$; 117. 

3 > . . (PA)rn; 8 8. 
,> > - ,, p r i ~ ~: 4 7. 
5 >  , ,, regular polytope : 3.7. 
,. .. ,, truncation : 5 5. 

9) ,. l 3 2 ,  l.12, li2, 231, 241, 3'51 ; 

/
/ 
I 

Polygon, poIphedron, polytope ; i . I ,  

Priine ; 1.3, 

Prism (generalised) ; 4.1. 


,, (foiir-dimensional) ; 4.4. 
Protfuct of symmetries ; 3.2, 9.1, 9.4. 
Pure fircllimedean ; 1.9. 

I f  reries ; 8.1. 
Radii of polytope ; 2.7. 

,, regular polytope ; 3 9. 
Rat~onal function ; 3.7. 
Reciprocal of regular polytope ; 3.3, 3.5. 7.9 

,, vertex figure ; 2.5. 
Reciprocation ; 1.3, 1.5, 1.8. 

Rectangular bold ; 4.4. 
Reflection ; 1.6, 2.4, 9.2. 
Reg~xlar polygon ; 1.7. 

. polytope : 3.1. 
,, ,, (necesrary conrlitiorlr for exist- 

ence) : 3.5. 
Rhornbrcul~octahedrorl ; 2.1. 

i t ~ g h t  priym ; I .7, 4.4, 12 4. 

Rotation ; 9 2. 

SALMON; 9.3. 

RC'HLAPLI : pref. 


,, funcl~ons; 8 9. 


, notlation for tn-enty-seven liner ; 13.1, 

13.3. 

,, symbol (for reg-iilar polytope) ; 3.4, 6.3. 
SCHOVTE; p i ~ f .  

Second rertex figure ; 2.6. 

Sections of (PA), : 9 6, 9.7, 9 8, 9 9., 10.3, 10.6. 

Self-rrcprocal : 1.3, 1.5. 

Sernl-degenerate ; 4 9. 

Semi-reciprocation ; 6.3, 7.3, 7.8, 9.5, 9.6. 

Strn~larity; 2.3. 

Slrriple tr~incation ; 5.1. 

Simplex (a,) ; 3.5. 

Srluls solids ; 2.3, 2.4. 


11.8. 

i 9 ., ,. 13J; 11 .9. 
HYLL; 10.2. 
H<trn~onicconjugatr ; 1.3 
Hrml-y,, ; 6.2. 

,, -&?,; 6.5. 
13css ; p ~ q .  
Hypothetical element ; 1.3. 
Icosidodecahedron (tl{3, 5)) ; 6.6. 

Improper regular polytope ; 7.9. 
Tntleterrninate equation? ; 8 7 .  
Iiltiicatrix : 2.1. 

I 

I 

I 

; 

j' 
I, 


IncXuction; 1.1, 1.7, 3 1 ,  3.2, 3 3 .  3.5. 5.2, 5.3, / 
6.2, 7 5, 7.8. 7 9. 


Iilterdect~on of lmes ; 13.1, 13.6. 

Tsohedral Arch~mctlean ; 1.9. 


), , ,  yrries ; 8 1. 
Iiosceles triangle ; 4.5. 
I<IWLXR; pie/. 
L ~ n e s ~ x e; 1.2. 
Jleacure polytope (y,,) ; 3.5. 
;1Irr,~sn; 2 1 .  
Jfixecl. krchrmededn ; 1.9. 
Nc7ighbourhood of a vertex ; 2 1. 
Normal pil~ng; 6.8. 
Object of this paper ; 7.3. 
Ortahed~on(P,) ; 3.5, 7.5. 
Operation : 1.6, 6 2 ,  13.6 
Order ; 1.6. 
Packing of ~phere-,m:tlogu~s : 6.K. 

Partition of sphere-analogue ; 7.0. 

Permutattort ; 3.6. 
Por~calze; I .2. 
P o r ~ s o ~ r .: yrc.f. 
Polc and polar ; 1 3. 

I 

I 

1 

I 

I 

I 

I SUIIM~~BVILLE, pIqi 

1 Sphere-~~n~llogue; 1.3, 6.8, 7.9. 
1 Squared p p e r  (8,) ; 1.5, 3.5. 
/ Star polytopes : ptf. 

/ STOTT, JIrr. A. Boor,lr ; pref. 
1 Sub-,lrt hlrr~ctlean ; 1.9. 

,, \cries ; 8.1. 
i Super-Arclinedean ; 1.9, 6.6. 
I 

I 
Symmetry : 16. 
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Symmctry of (IA),, (IA), ; 9.8, 10.8. 

,, ,, (PA), ; 9.4, 10.8. 
,, ,, (PA), ; 9.3, 10.8. 
), ,, (PA)s; 9.2, 10.8. 
,, ,, (PA),; 9.1, 10.6, 10.7, 10.8. 
, >  ,, (SA),, (SA), ; 9.6. 
) , ,, semi-reciprocal polytopes ; 10.9. 

?, ,, truncation ; 5.3. 
Table of polytopes n,, ; 12.7, 12.8. 

>, 5 ,  Ow,; 12.9. 
Tetrahedron (a,) ; 3.5, 6.2. 
Transcendental function ; 3.7. 
Tran~formation; 9.4, 10.1. 11.6. 
Translation ; 9.1. 
Transposition ; 9.2, 13.4. 
Truncation of a,h ; 6.8. 

3 ,  hy,, hs,, ; 6.7. 
,, n,, ; 12.3. 
,> (PA), ; 10.4. 
,, regular polytope ; 5.1, 7.3. 

VERTEX FIGURES. 

Truncation of truncation ; 5.9. 

,) uniform polytope ; 5.8. 
,> n,+"+l; 7.2. 

Type ; 1.4, 7.5, 12.2. 
Uniform polytope ; 1.7, 6.1. 
utilvertex figure ; 2.6. 
Vertex ; 1.2. 

,, angle of prism ; 4.3. 
,, figure ; 2.1, 2.2. 

, ,  ,, of a,h, ea, ; 6.8 
, ,  ,, ,, hy, ; 6.2. 
3 ,  ,, ,, I&, ; 6.5. 
,) ,, ,, (IA),, (PA),,, @A),; 8.2. 
2 ,  ,, ,, filly ; 7.5. 
,, ,, ,, prism ; 4.5, 4.8. 
> , ,, ,, truncation ; 5.3. 
) 7  ., ,, tl?tPq ; 12.5. 
,> ,, ,? I IZzL; 7.1. 

Zones of (PA), ; 10.4. 


