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Preface.

The regular polytopes in two and three dimensions (polygons and polyhedra) and the
“ Archimedean solids ”” have been known since ancient times. To these, KEpLER and

Poinsor added the regular star-polyhedra.

About the middle of last century, L. ScHLAFLI* discovered the (convex) regular
polytopes in more dimensions. As he was ignorant of two of the four KepLER-PoIiNsoT
polyhedra, his enumeration of the analogous star-polytopes in four dimensions remained
to be completed by E. Hess.t

Recently, D. M. Y. SoMMERVILLE} interpreted the (convex) regular polytopes as
partitions of elliptic space, and considered the analogous partitions of hyperbolic

space.

Some particular processes, for constructing * uniform > polytopes analogous to the
Archimedean solids, were discovered by Mrs. BooLe Stort§ and discussed in great
detail (with the help of co-ordinates) by Prof. Scmoutr.| Further, E. L. ErLreq
completely enumerated all the uniform polytopes having a certain *“ degree of regularity,”
these including seven new ones (in six, seven and eight dimensions).

The object of the present paper s to exhibit these seven polytopes (here named 245, 1,4,
31> 231, laa, 4a1, 241), along with certain others, as members of one family ; and to tnvestigate

the relevant groups of symmetries.

I should like to express here my thanks to Prof. BAKER for his advice and encourage-
ment. The Appendix in regard to the cubic surface, was suggested by him.

* “ Réduction d’une Intégrale Multiple qui comprend I’arc du cercle et ’aire du triangle sphérique comme
cas particuliers,” ‘ LiouviLLE’s Journal,” vol. 20, p. 361 (1855).

T “ Einleitung in die Lehre von der Kugelteilung,” ¢ Marburg. Ber.,” p. 31 (1885).

I “ The regular divisions of space of » dimensions and their metrical constants,” ¢ Palermo Rendiconti,’
vol. 48, p. 9 (1923).

§ ““ Geometrical deduction of semiregular from regular polytopes and space fillings,” ‘Amsterdam
Proceedings (Koninklijke Akademie van Wetenschappen),” vol. 11, No. 1 (1913).

| “ Analytical treatment of the polytopes regularly derived from the regular polytopes,” ibid., vol. 11,
Nos. 3, 5; vol. 12, No. 2.

9 “ The Semiregular Polytopes of the Hyperspaces,” Hoitsema, Groningen, 1912,
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1. INTRODUCTION.

I.1. A “ polytope ” is the appropriate extension, to many-dimensional space, of the
familiar polygon and polyhedron, which we shall call II, and I, respectively. II,
is taken to mean a segment of a straight line, considered as bounded by its two end
points II,.

An m-dimensional polytope II,, is then defined inductively, as a simply-connected
portion of m-space, bounded by a number (more than m) of polytopes II,_,, such that
every II,_, (occurring among the boundaries of the II,,_,’s) belongs to just two of the
I, _,’s. (The number of II,_,’s or II,,_,’s to which any II,_; belongs is, of course,
more than two.) As we shall consider none but ““ convex ”” polytopes, it is assumed that
no two II,,_,’s have any common points not on their boundaries.

1.2. It follows from this definition that II,, possesses ““ elements ” II, for all values

of r from 0 to m — 1, and we can say it possesses one element II,,, namely itself.
Let

(])

denote the number of elements II,; so that

Clw)s (w) and (")

bEAN13

are the numbers of “ vertices,” *“ edges ” and *“ bounding figures,” respectively, and

1.21 ("l,) = 1.

The special property which distinguishes the general polytope from other kinds of
*“ configuration ” is

1.22 T (—1) (],) = L.

r=0
When m = 0, this is a particular case of 1.21. When m =1 and 2 it gives

1.23 () =2

(““ a line has two ends ”*) and

1.24 ©l) =
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(““ a polygon has as many sides as vertices ”’). When m = 3, it is the famous EULER’S
theorem, of which the neatest proof is LEGENDRE’s* (by means of spherical triangles).
For a proof in the general case, see § 16 of H. PoiNcarE’s ““ Analysis Situs.”t

We can replace m by any smaller number s in a general identity such as 1.21 or 1.22,

if we let
(1) (r=s=m)

denote the number of elements II, belonging to a particular element II,. It is con-

venient also to let

denote the number of elements II, to which a particular element II, belongs. If we
restrict the II’s and II, to belong to one II,, the number of II,’s is naturally called

(ln) (r=s=n=m).
Clearly
1.25 (o) = 1 = (z]n)-

1.3. A ““sphere-analogue ” is the locus of points (in m dimensions) at a fixed distance
(called the ““radius ”’) from a fixed point called the “ centre.” If any straight line is
drawn through a fixed point P to meet a fixed sphere-analogue in A and B, it can be
proved that the harmonic conjugate of P with respect to A and B lies in a fixed * prime ”
or (m — 1)-space. P and the prime are said to be * pole and polar ” with respect to
the sphere-analogue.

Two polytopes are said to be ‘‘reciprocals ”’ (of one another) if the vertices of one
and the primes (containing the bounding figures) of the other are poles and polars with
respect to a sphere-analogue whose centre is strictly inside the polytopes. Thus we
can say that a vertex II, *‘ reciprocates ”’ into a bounding figure II,_, ; that an edge
II,, the join of two vertices, reciprocates into an element II,_,, the common part of
two bounding figures; and, generally, that reciprocally corresponding elements are of
dimensions adding up to m — 1. Since a polytope is supposed to have one element
IT,, to which all its lower elements belong, it is natural to assume that the reciprocal
polytope—and therefore any polytope—possesses one hypothetical element IT_; which
belongs at the same time to every proper element II,. Expressing this idea numerically :

1.31 (') =1,
1.32 (7,

1.33 (Z1lm) = Cla)s
1.34 (21]a) = (ln)-

* ¢« Bléments de Géométrie,” liv. 7, Prop. 25 (1794).
t ¢Journal de I'Eeole Polytechnique,” vol. 1, p. 100 (1895).
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If
1.35 s+sd=r+r=n+n"=m—1,

the following pairs of properties are reciprocal (i.e., are equal, when regarded as corre-
sponding properties of reciprocal polytopes) :

1.351 Cl.) and (*],),
1.352 | ¢l.) and  (%|w),
1353 (ﬂn) a’nd (:t,"r')>

1.34 exhibits 1.351 and 1.352 as special cases of 1.353.
By means of this rule, every identity can be reciprocated to give another identity
Thus 1.21 gives 1.31, while 1.23 and 1.24 give respectively

1.36 moil) =2
and '

1.37 (nZ3lw) = (n23]w)-

(These two identities can be generalized by changing m into n throughout.) 1.31 allows
1.22 to be written in the self-reciprocal form

1.38 T (—1y(l,) =0

1.4. If 11, possesses ("|5) I,’s of a special type p, and (*|5,) II.’s of type o ; such that
every II, of type ¢ belongs to (§|7) I’s of type o, while every II, of type o possesses
("|¢7) II,’s of type p ; then, after a little consideration, it is seen that

1.41 (1w G2y = () Cl) - (=5 =m).

Here the “ ¢ ” and “o ” can be omitted (independently) if all ’s or all I’s are of
one type.

Changing m into n, reciprocating according to 1.352 and 1.353, and dropping the
dashes, we obtain the more general theorem

1.42 Gla) G = Gl Gla) (0 =5 =7 = m),
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whose meaning should by this time be clear without detailed explanation of the
symbols. 1.41 (with » and s interchanged) can be obtained from 1.42 by putting
n=—1.

1.5. So far, we have tacitly assumed the polytope,to be finite. But it is convenient
to regard an infinite set of finite polytopes II,,_;, fitting together to fill an (m — 1)-
space, as a ‘‘ degenerate polytope ” in m dimensions, the II,_;’s being its “ bounding
figures.”” All the properties

(") O=r=m-—1)

are now infinite, but can be regarded as tending to infinity in definite mutual ratios,
the ratio ("[5,) : (°|n) being given by 1.41. Selecting then a set of finite numbers (’[,)’

having these proper ratios, 1.22 becomes

m—1
1.51 S (—1) (],) = o.

7 =0
To take a very simple example, “squared paper,” regarded as a degenerate polyhedron
bounded by squares, has an infinity of vertices, edges and faces, but we can still say

Cls) s (ta): Cls) =1:2:1,
and these numbers satisfy
1—2+1=0.

Degenerate polytopes, like finite ones, occur in reciprocal pairs; but now, of course,
there are no sphere-analogues or harmonic ranges to help us. The rule given in 1.35
for reciprocally corresponding elements still applies, if we obtain the reciprocal
of a given degenerate polytope by taking, for vertices, amy points inside the
original bounding figures, and joining them up suitably. The identity 1.51 is

self-reciprocal.

1.6. The operation of moving or reflecting any polytope (preserving all distances
among its component parts), in such a way as to leave it unchanged as a whole, is called
a ‘“symmetry ” of the polytope. The totality of symmetries (including identity) of
any given polytope I, forms a group, whose order will be called g,,.

If the symmetries of II,, suffice to change (in turn) every one of a certain set of II,’s
into a particular II, of the set, these II,’s are said to be ““equivalent.” (Clearly,
equivalent elements must be equal.)

1.7. We are now in a position to give an inductive definition of ““ uniform polytope.”
II, and II; are supposed to be “ uniform * always. As a basis for the induction, a
polygon II, is said to be uniform if it is ““ regular,” s.e., if its sides are equal and its
vertices concyclic. Finally, a polytope in more than two dimensions is said to be
uniform if its bounding figures are uniform and its vertices equivalent.
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From now on, “ IL, ” will always mean a uniform polytope. Since the symmetries
permute the vertices, which are equivalent, we have

1.71 Cln) = 9n = (!

It follows that g, is finite or infinite according as II,, is finite or degenerate.

As three-dimensional examples : the equilateral-triangular right prism with height
equal to side, is a finite uniform polyhedron ; and the plane filled up with alternate
infinite strips of squares and of equilateral triangles, is a degenerate one.

It is easily proved by induction that all the elements of a uniform polytope are uniform.
In particular, all the two-dimensional elements are regular polygons. It can also be
proved by induction that the edges of a uniform polytope are all equal. Their common
length will usually be taken as unity. A polytope of edge a similar to II,, will be
called I, or, if a is unspecified, II,, X .

1.8. We shall assume that the vertices of a finite uniform polytope, being a finite
set of equivalent points, necessarily lie on a sphere-analogue, whose centre (called the
“ centre ” of the polytope) is invariant for all symmetries. The radius of this “‘ circum-
scribing sphere-analogue ” is called the ““ circum-radius * of the polytope. The (m—1)-
space filled by a degenerate polytope may be regarded as a limiting kind of circum-
scribing sphere-analogue, with its centre at infinity in the normal direction.

For reciprocating a finite uniform polytope, we shall always use a concentric sphere-
analogue. (The shape of the reciprocal polytope is, of course, independent of the size
of the reciprocating sphere-analogue.) In order to reciprocate a degenerate uniform
polytope, we shall always take for vertices the centres of the original bounding figures.
The reciprocal of a uniform polytope is not in general uniform ; but it obviously has
precisely the same symmetries, and therefore equivalent elements reciprocate into
equivalent elements. k

1.9. If all the elements II, are equivalent, for each  less than some number [, while
the elements II, are not all equivalent ; it is convenient to give II, special names,
for the larger values of 1: II,, is said to be ““ super-Archimedean,” ““ Archimedean *’ or
“ sub-Archimedean ”” if I =m — 1, m — 2 or m — 3, respectively. The Archimedean
polytopes are further sub-divided into ““ pure,”  isohedral ” and  mixed,” Archimedean
polytopes : “ pure ” if the II,_,’s (though not equivalent) are equal, and otherwise
“isohedral >’ or “ mixed ” according as the II,,_,’s are, or are not, all equal.

The ordinary “ Archimedean solids ”’ belong to the ““ super-Archimedean * and “ pure
Archimedean ” categories.

2. Vertex Figures.

2.1. The definition 1.7 may seem somewhat artificial. It was devised in order that
a uniform polytope, so defined, should be uniquely determined (in shape) by the neigh-
bourhood of one vertex, 4.e., by what happens inside an arbitrarily small sphere-analogue
VOL. COXXIX.—A 2 X
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drawn round one vertex. We shall assume then that, given any uniform polytope,
there is no other uniform polytope of different shape having the same vertex neighbour-
hood. J. C. P. MiLLER has made the interesting discovery of a non-uniform polytope
(in three dimensions, bounded by 8 triangles and 8 -8 -+ 2 squares) whose vertex
neighbourhood is unique and the same as that of the uniform ‘“ small rhombicubocta-
hedron.””* »

It is desirable to define some sort of indicatrix which will give a clear idea of the
vertex neighbourhood of a uniform polytope. The vertex neighbourhood (z.e., vertex
angle) of a regular %-gon is determined by the distance, 2 cos n/k, between points
measured off at unit distances along two covertical sides. We say that aline of length
2 cos m/k is the “ vertex figure ” of the polygon. This idea can be extended to more
dimensions.

2.2. First suppose that the given uniform polytope II,, is of unit edge. Those vertices
which are the further ends of all edges at a particular vertex A, then lie on the sphere-
analogue of unit radius, centre A, as well as on the circumscribing sphere-analogue
(1.8) of the whole polytope. Being on the intersection of two sphere-analogues, these
vertices lie in a prime @, and are therefore the complete set of vertices of an (m — 1)-
dimensional polytope II,_, ;. This polytope is called the “ vertex figure” of IL,.
(It is generally not of unit edge, nor even uniform.) Its (s — 1)-dimensional elements
IT,_; ; may be seen to be the vertex figures of those s-dimensional elements of II,, which
occur at A. In particular, corresponding to any k-gonal II,’s of II,, II,_, ; has edges
T
P

The vertex figure of a degenerate uniform polytope has unit circum-radius, since its
centre is A. The centre of the vertex figure of a finite uniform polytope is the inter-
section of the prime @ with the line joining A to the centre of the polytope.

The vertex figure is independent of the choice of A, since all vertices are equivalent.

2.3. In order that similar polytopes may have identical vertex figures, we must define
the vertex figure of a uniform polytope of arbitrary edge length as having for vertices
points measured off at unif distances along a set of covertical edges. The figure so
obtained is clearly similar to that determined by the ends of the edges.

In virtue of this definition, the assumption at the beginning of 2.1 implies that two
uniform polytopes with the same vertex figure must be similar. In nearly all cases the
similarity is ““ direct ” (¢.e., the two polytopes can be superposed by means of shrinkage
and motion in their own space). But the ““ snub cube ’* (KEPLER'S ““ Cubus Simus )
and “ snub dodecahedron ”* both exist in two enantiomorphous varieties (which
cannot be superposed without reflection or four-dimensional motion). In each of these
cases, the two varieties have the same vertex figure; e.g., the leevo- and dextro-snub
cube, each bounded by 8 + 24 triangles and 6 squares, both have four triangles and

of length 2 cos

* ¢ Encyclopadia Britannica,” 11th edition, art, ¢ Polyhedron.”
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one square at each vertex, so that the vertex figure of either solid is a cyclic pentagon

of sides
1,1, 1, 1, 4/2

(which is unique). No such exceptional polytopes have been found in more dimensions.

2.4. Tt is evident that all those symmetries of a uniform polytope which leave one
vertex invariant occur as symmetries of the vertex figure. It is generally true that they
include all the symmetries of the vertex figure. We shall assume that the only cases
of failure of this theorem are those provided by the two “ snub solids ” (2.8), whose
vertex figures (being cyclic pentagons with four equal sides) have a reflective symmetry
not shared by the whole polyhedron. With these two exceptions then, if ¢, ,,
denotes the order of the group of symmetries of II,,_, ,,

2'41 gm = (Olm)gm-—l,l'
For the snub solids, on the other hand

2.42 g = (],)
although g, _, , = 2.

2.5. Let :
(7o)

denote the number of (s — 1)-dimensional elements II,_; , possessed by the vertex
figure II,_; ;. We have seen (2.2) that these elements simply correspond to the II,’s
at one vertex of II,,. Hence

2.51 (‘_llm~l,l) = (:)Im)

Substituting in 1.41, with » = 0, we have
. (Ol'm lIm-l 1) = I lm)!
1.e.,

2.52 Cla) = Clw) 7Y m=1,2)/C13)-

If we know the properties of the vertex figure of IT, and the number of vertices of I,
we can thus obtain the number of IT’s which have (°[7) vertices.

Since the vertices of a polytope correspond to the bounding figures of its reciprocal,
the reciprocal of II,, has only one kind of bounding figure, and this bounding figure is
the reciprocal of II,_,, (with respect to an (m — 1)-dimensional sphere-analogue
concentric with II,,_; ;). This agrees with the fact that (by 1.85) (*|,.—;) and ( |m—1,1)
are reciprocal properties if s 48" =m — 2.

2,6. If 11,,_, , happens to be uniform, its vertex figure is denoted by II,,_, , and is
called the ““second vertex figure” of II,. Extending this idea: of Il .45,y 5
untform, its vertex figure II,,_, , is called the ““ uth vertex figure ” of II,,. It follows
that II,_, , is the (u — v)th vertex figure of II,_, ,, and that the uniformity of
I, _ut1,4—1 mplies the existence of II,_,, for all v <wu. II,, must be taken to

2x2
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mean II,. The existence of II,,_; (i.e., the regularity of II,,_,) would trivially
imply the existence of II ,,.

The (s — u)-dimensional elements II,_,, of II,_,, may be seen to be the wuth
vertex figures of those s-dimensional elements of II,, which occur at one II,_,. Expressing
this fact numerically (the properties of II,, being distinguished from those of II,

by changing “ p ”” into *“ p, u ”’), we have
2.61 C™mmnw) = (lalm) (@ -—1=s=m).
This is a special case of the still more obvious relation

2.62 (s—u’m—-u, u) = (ﬁlm) (u —l=r=s= 1"’)/),

r—u

in which we may, as usual, replace m by n (= m).
Substituting 2.61 in 1.41, with » = u — 1, we have

2.63 () CYnZw) = 7Y Clz) (v —1=s=m).

(The assumption that IT,_, , exists implies that the II,_,’s are all of one type.)
If 11, has a uth vertex figure, 2.41 can be extended so as to give

264 gm - (Oim) (Oim—l, 1) (Olm—z, 2) e (Olm—u+1, u-—l) gm—u, ue

2.7. Let
R

7 m

(r = m)

denote the central distance of a II,, 7.e., the distance from the centre of II, to the
centre of one of its elements II,; so that, in particular, (R, denotes the circum-radius

of II,. Analogously, let
R

LR (r=n)

denote the distance from the centre of a II, to the centre of a II, belonging to the II,.
Since the line joining the centre of a sphere-analogue to the centre of the section by
an n-space is perpendicular to the space of section, ,R, and R, and ,R,, must form a

right-angled triangle. So

2.71 (R = (R + (R, (r=n=m).
In particular (putting r = n)
.2.72 R, =0

and (putting » = 0)

2.73 (nR’m)2 = (ORm)2 - (oRn)z-

2.8. Let 26, denote the angle subtended at the centre of II, by an edge, and 26,
the corresponding property of IT, .. Then, supposing 11, to be of unit edge,

2.81 oRy = % cosec 0,
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If 11, has a k-gonal I,, II,_; ; has an edge of length 2 cos 0, where 6, = n/k.
So, if 0,,_, ; refers to this edge, the circum-radius of II,,_,,, is given by

2.82. ‘OR,,,_L1 = cos 0, cosec 6,, ;1.

A glance at the diagram (Fig. 1 ; in which
O is the centre of II,,, AB an edge, and
Q the centre of the actual vertex figure
at A) reveals the fact that

2.83 oRm_1,1 = cos 0.

(Thus a given polytope | I, cannot be
the vertex figure of a real polytope if

2.84 oRm—11>1.) 0 /26m
Combining 2.83 and 2.82, Fic. 1.
2.85 cos 0, = cos 0, cosec 0,,_, 1
and so
. cos? 0
2.86 sz em =1 — -—:——2———2-—.
sin® 0,,_; 4

If 11, has a uth vertex figure, we may apply 2.86 to II,,_,,, ,_1, obtaining

cos® 0, ,_4

2.861 SIN® 0, _ypg g1 = 1 — —— .
m—u-+1,u sm"’ em_u’u

Therefore sin? 0,, can be expressed as a continued fraction* :

cos? 0, cos® 0, , cos® 0, , cos® 0, 4

2.87 sin? 6, =1 — '
1 m 1 - 1-— 1 - 1 — OOS2 em-—u, u

In particular, if 1, has an (m — 2)th vertex figure,

Gin? 6 —1— cos® 0, cos? 0, , cos® 0, , _co¥ Gg,m;s
" 1— 1— 1— "1 —cos® 0y 40
2.88 =Ap/Ap1 1
where, in accordance with the algebra of continued fractions, A, is defined by
A =1,
2.89 A, = sin? 0,,

. : 2
Au+‘.’ - Av+1 - Av COS 62, )

and A, _, , is obtained from A, _, by changing 9, into 0, , and 0, , into 62,,, o

* This use of continued fractions is due to SCHLAFLI.
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2.9. Applying 2.88 to II,,_, , (still supposing the existence of II, ,_.).

SN2 0,y 0= Ay o/ Duetups (4= m — 3).
Also
Sin2 0, ,_y = Ay _s
Hence
2.91 sin? 0,, sin? 0,,_, , sin® 0,,_,, ... sin2 0, , ., =A,,
and therefore \
2.92 A, =0.
Combining 2.81 and 2.88,
2.93 oR,, = 3 (Agus, 1 /AN

Thus the polytope is degenerate if
2.94 A, =0.*

The recurrence formula 2.89 enables A, to be expressed as an m-row determinant,T

namely
1 cos 0, 0 0 0
2.95 A, =1 cos0, 1 cos 0, , 0 0
0 cos 0, ¢ 1 cos 0, , 0
0 c08 0y g 1 cos 05 s 0
0 0 cos 03 3 1 c08 0, s
0 res 0 0 0 cos 05 s 1

3. Regular Polytopes.

3.1. The very simple polytopes II, and II, are supposed to be automatically ‘ regular.”
A regular polygon has already been defined (1.7). We define a “‘ regular polytope ”’
inductively as a uniform polytope whose vertex figure is regular. This definition is
exactly equivalent to saying that an m-dimensional polytope is “ regular ”’ if it has an
mth vertex figure. Thus IT,, if regular, possesses the complete set of vertex figures
IL,,_y 4 from II, , (= II,) down to II, ,, (a mere point), and all these are regular. In
particular, since there is an (m — 2)th vertex figure, 2.9 is relevant.

By 2.2, the vertex figure of a bounding figure of II,, is a bounding figure of the vertex
figure of II,. This principle enables us to prove by induction (through the series of
vertex figures) that the bounding figures of a regular polytope are regular, thence that

* Polytopes for which A,—_1,1 = 0 are “ improper,” since they require cos 0z cos 02,1 cos 02,2... = 0.
For by 2.91, Ap_1,1=0 implies sin Op—q =0 for some » > 0, while, by 2.861, sin Op—y,4 =0
(#> 0) implies cos 0Og,4—1 = 0. ,

T Cf. ScrLAFLL loc. cit., § VI.
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all the elements are regular, and finally that everything of the form IT,, (which can
be regarded either as a p-dimensional element of II,_, , or as the uth vertex figure of
I,,,) is regular.

3.2. We proceed to prove by induction that the elements II, of a regular polytope
11, are equivalent. As a basis for the induction, we know that the vertices of the nth
vertex figure of II, are equivalent (since the nth vertex figure is regular and, a fortiors,
uniform). Now suppose that the elements II,_, , of the vertex figure 1I,_;; are
equivalent.

Take any two II,’s of IL,. Since the vertices of I, are equivalent, there exists a
symmetry which will change the first II, into another IT, having one vertex (A, say)
in common with the second II,. We thus obtain two II,’s with a common vertex A.
By 2.2, their actual vertex figures at A are elements II,_; 4 of the actual vertex figure
of T, at A. But we are supposing the elements II,_; ; of II,_,; to be equivalent.
Hence there exists a symmetry of II,_, ; which will change one of these two II,_; ,’s
into the other. By the assumption in 2.4 (since the exceptional snub solids are not
regular), this symmetry, regarded as leaving A invariant, is a symmetry of II,. As
such, it must change one of the two II,’s at A into the other ; for, otherwise, IT,, would
possess two different II,’s having the vertex A and their vertex figure at A in common,
which is absurd. ‘

The combination or ““ product ” of the two symmetries here described establishes the
equivalence of the original (arbitrarily chosen) pair of II,’s, and hence the equivalence
of all the II,’s. A fortiore, all the II’s are equal. Thus we can speak of the II,, and
so0 also of the 1I,,_, ,.

Throughout 3.2, we have really assumed, concerning II,,, nothing more than that its
nth vertex figure is uniform. We can therefore assert the following more general
theorem : _ )

If II,, has a uth vertex figure, then for all n (strictly) less than «,

3.21 the II,,,’s are regular,
3.22 the II,.,’s are equal,
3.23 the II,’s are equivalent.

(3.21 follows from the uniformity of the nwth vertex figure, which implies the regularity
of II,,. 38.22 follows from 3.21, since unequal II,,,’s would somewhere have to
belong to the same II,..)

3.3. We shall next prove that the reciprocal of a regular polytope is regular This is
trivially true in one dimension. Suppose it true for every regular polytope in m — 1
dimensions. :

- Consider any regular polytope II,, in m dimensions, and let II’ be its reciprocal,
The bounding figure of IT’,, being (by 2.5) reciprocal to the (regular) vertex figure of
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I, is regular (by hypothesis). Also, since equivalent elements reciprocate into
equivalent elements (1.8), the vertices of II’,, which correspond to the bounding figures
of II,, are equivalent (3.2). Hence II’, is uniform (1.7). Its vertex figure, being
reciprocal to the bounding figure of II,, is regular. Hence II’, is regular (3.1).

3.31. Since the bounding figure of II’, is reciprocal to the vertex figure of II,, it
follows (by induction) that the (m — u)-dimensional element of IT’, is reciprocal to
M, a |

3.32. If 1, is uniform and has an (n 4 1)th vertex figure, so that its I, ,’s are
equal (3.22) and regular (3.21), then I, will always be taken to mean the vertex figure
of the reciprocal of II,,,. II’, has thus a definite edge-length, instead of being

merely the reciprocal of II, (irrespective of size).
3.4. ScuLAFLI* devised the following ingenious notation for regular polytopes. The

regular polygon of k sides is called
{k}.
The regular polyhedron whose bounding figure and vertex figure are respectively
{k,} and {ks} X
{ky, Ko}

and, generally, the regular polytope whose bounding figure and vertex figure are respec-

tively

is called

{kyy by ... Koo} and  {ks, ... Kp_gy kpoi} X

is called
{kly kz: km—zy km—l}'

The occurrence of “ k,, ... k,_s,”" in both the bounding figure and the vertex figure,
is justified by the principle (3.1) that the vertex figure of the bounding figure is the
bounding figure of the vertex figure.

If
3.41 M, = {ky, Koy -o Fonsy Fns),
it is easily seen that
3.42 0, = {ky, Koy oo by, ki),
Hm—-u,u = {ku+1) ku+27 che km—-Za km—-l} X
and
3.43 H_yw = {Kusrs Kugas oon Kooy K51} X.
In particular,
3.44 I, , = {k, 1} X.
Hence .
3.45 ku+1 = (Ol‘z, u) = (llz, u)

* See the Preface. Actually ScuLAFLI used round brackets instead of curly ones. The same notation
(without brackets or commas) was employed by SoMMERVILLE, and by Van Oss, * Amsterdam Proceedings,’
vol. 12, No. 1 (1915).
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Since I,_,, is the vertex figure of II,_,.,,_;, the edge of II,_,, must be the
vertex figure of I, ,_y, t.e. of {k,} . This edge is therefore (2.1) of length 2 cos = /k,,
and 3.43 becomes more precisely

3.46 Moy = (husss ks oo B K} 2 008 7
In particular, ’
3.47 Hm—l,l = {kZa k3a e km—Z) km—-l} 2 cos = .

1

The vertex figure being thus definite, 2.3 shows that two different regular polytopes
cannot have the same Schlidfli symbol. But it is only for certain special values of the
k’s that the polytope {k, ks, ... kp_s, kn_i} can exist at all. These special values will
now be determined. ) o

By the definition of 6, , in 2.8,

V2R

3.48 : 0, ., == ——.
’ ku+1

Hence, by 2.95, A, is a function of the £’s. In particular—

-
Al = ]-)
. T
A, = sin? T
1
. T 0
A = sIn? =~ -- cos? —
3.49 X I I’
o p T . T T
A, = sin? — sIn? —— — cos? — ,
R key
\
s 9 T 9 TC . 1 . T ™
Ay = <sm‘z — — Cos? — ) sin? — — sin? —— cos? -—.

kl kz k:; kl k3

3.5. Supposing
k, > 2

(since the *“ digon ” {2}, which encloses no space, is not strictly a polytope according to
1.1), we shall enumerate all the regular polytopes which can be obtained from the
following two necessary conditions :

3.51 {kla kz; s /\31;1,-2} a'nd '{kZ: s km-—-Z) km—l}
exist and are finite ; and

3.52 kyy Koy oo Rom—sy Kom

satisfy A, = 0. (By 2.93, the polytope is finite if A,, > 0.)
It will appear later that these conditions are not only necessary but sufficient.
VOL, CCXXIX.—A 2 Y



344 H. 8. M. COXETER ON POLYTOPES WITH

In one dimension, we admit II; by writing
I, = {}.

In two dimensions, {k;} is admitted for all %;, the degenerate polygon {w } being an
infinite straight line broken into consecutive segments of unit length.
In three, four and five dimensions, we have :—

(Fvnate) “ (Degenerate)
m = 3. {3, 3}, {3, 4}, {4, 3}, {3, 5}, {5, 3} {4, 4}, {3, 6}, {6, 3}
m = 4.‘{3, 3,3}, {3,3,4},{4, 3,3}, {3,3,5},{5. 3,3}, {3, 4, 3} {4, 3, 4}
m = 5. {3, 3, 3, 3}, {3, 3, 3,4}, {4, 3, 3, 3} {4,3,3,4},{3,3,4, 3}, {3, 4, 3, 3}

Since {3, 3, 3, 3}, {3, 3, 3, 4} and {4, 3, 3, 3} are the only finite regular polytopes in
five dimensions, it follows by repeated application of 3.51 that the only remaining
possibilities (m > 5) are :—

(«, ={3,3,...3, 3},
J B, =1{3,3,...3 4,
vy, =14,3,..3,3},

00 = {43, ... 3, 4},

3.53

These all satisfy
Am (‘Icla 7629 oo 7%-25 km—-l) == 0.

For, we can prove <by induction, using 2.89 in the form

. 9 7f‘
Ay =1, A, = sin® ]% , Aypy =A, —A,_; cos” 70;)
that ,
A, (3,38,...8,3) = (m-+1)/2",
A, (3,8,...8,4)=A,(4,3,...3, 3) = 1/2"!
and

A, (4,3,...3 4) =0.

m

Thus «,, B, v, are finite, while §,, is degenerate.
Actually, «,, B, and v, are well known under the respective names ““ regular simplex,’
“cross polytope ” and “ measure polytope.” In particular,

b

®g = {3, 3} 18 the regular tetrahedron,
Bs = {3, 4} is the octahedron,
vs = {4, 3} is the cube.

Also
33 = {4, 4} is the * squared paper ” pattern (1.5).
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Tt follows at once from 3.53 that

l(ocm has bounding figure «,_, and vertex figure o, _,,

B » D) 39 Ap—1 9 35 29 B—1>
.] Ym 5 5 29 Ym—] 99 EY] 29 am-—l '\/2’
Lsm 3 k3] b Y'm—l b 5 59 Bm—l '\/2

Using these facts to define o,,, B Yms 5, When m is small, we have successively :—
@y = {38}, o, = {} = II; (unit length), «, = I,
Be=1{4, Br=um7?,
Y2 = B2, Y1 = %, Yo = %o
3y = {®}.
Since the bounding figure and vertex figure of a regular polytope are reciprocal to

the vertex figure and bounding figure of the reciprocal polytope, it is easily proved by
induction that the polytopes

{kyy bgy oo kg, Ky} and ko, Ky, ol By, Ky}

are reciprocal. In particular, 8, and v,, are reciprocal, while «,, and 3,, are each self-
reciprocal.

With the meaning assigned in 3.32, we now have
T

3.54 ' 0, = {ko_v, knegy ... ks, k3 2 cos ¢

3.6. In order to prove that all these polytopes really exist, we shall specify Cartesian
co-ordinates for all the vertices of each polytope (except the polygons, whose existence
is obvious).

The notation here employed for co-ordinates is as follows :—

(21, Zgy ... )

denotes the set of points obtained by permuting the 2’s in every possible way.
(@, Tay ... 2,)

denotes the set obtained by permuting them evenly. The sign of ambiguity (1) placed
before a bracket indicates that every co-ordinate within may have either sign.

(@gy e @p 3 Tpyas -ov Tys Tggts --0)
denotes the set obtained by permuting ;, ... ©, among themselves, Z,,, ... ¥, among
themselves, and so on. In particular, (z; ; #,; ...) denotes a single point.

2Y 2
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For degenerate polytopes, the co-ordinates are taken to be all integers (positive, zero
and negative), arranged in every possible way, subject to whatever conditions are stated.

Sometimes (e.g., in the case of o, 41/2) it is convenient to employ m + 1 co-ordinates
with a constant sum (instead of simply m co-ordinates), in which case the polytope is
to be regarded as lying in a prime of the (m - 1)-space.

= always stands for the positive root of the equation 22 — z — 1 = 0, so that
3.61 v =31(/b5+4+1) =1+ 1 1+ 1 1_}_ i 1+ . ad wnf.

On comparison with 3.5, it is seen that the following list contains co-ordinates (some-
times in two alternative forms) for the vertices of all the regular polytopes (m > 2).

o A/ : (1,0,0,...0); M ZEros.

B2 : +(1,0,0,...0); m — 1 zeros.

Y 2 : +(1,1,1,..1); m ones.

3, : (@4, Tgy vev Xpy) (all integers).
J( {3, 5} 2% : + (7, 1, 0) (cyclically permuted).
L{3, 5} 271 : (v, 1, =74, 0) (evenly permuted).

f:}: (v, 71, 0)
L+(@1,1)

j (B =110,
L(5, 8} 4c1 : i(\/ta 1, —1, —+/5),
(

{ {5, 3,} 2r 71 } (together).

1,1,1, — 3).
{3, 6} ’\/2 . (iIJl, wg, 183) ; ml + xz + .’163 = O.
{6, 3} v/2 : (1,0, —1) (mod. 3) ; @ + @3 + %3 = 0.

f j: (T’ 17 T_l? 0)”
+ (2, 0, 0, 0),
L+ (1,1,1,1).

({3, 3, 5} 2= 7f

I

(7% v, 71, v71) (1 or 3 minuses),
(75 75 T, T72) (1 or 3 minuses),
(v5,1,1,1) (0, 2 or 4 minuses),

L+ (2, 2,0, 0).

(3,3, 51227710 2

* Cf. ScHOUTE’S *“ Analytical treatment of the polytopes...”” (loc. cit. in Preface), § 123.
T Ibid., § 160. ~
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(5. 3, 8} 2r2*

! {8, 4,3} v2f

L3, 4, 32t

{{3, 3, 4,342

(3,3,4,3 2

{3,4,3,8 /2 :

[+ (2, 7,1, 7Y,
+ (7, 4/5, 71, 0,
+ (7%, 1«72, 0),

(
(2, v, 771, 27Y),
(
(

N\

+ (1, 1, 0, 0).

{ + (2,0, 0, 0),
+1(1, 1, 1, 1).

(w].’ Lo, T3, wA) 5 I + Lo + {2 + Xy = 0 (mOd. 2).

(0, 0, 0, 0) (mod. 2),
{(1, 1, 1, 1) (mod. 2).

(1, 1, 0, 0) (mod. 2).

3.7. Let g,, be the order of the group of symmetfies of a regular polytope II,,, and
Js—u, « the corresponding property of 1,_,,. By 1.71,

and

By 2.41,
3.71
Similarly

Hence, by 2.52,

go=1

G =2

(so that go,, =1)

(so that gy, , = 2).

(olm) = gm/gm—l, 1e

(Ols) = .qs/ 8—1,1 and (%m-s,u) = Gm—s, s/ m—s—1, s-+1°

(gs/gm) (slm) = (gq—l, l/gm—l,l) (S-IIm—l, 1)

and
3.72

= (go, s/gm—-s, s) (olm-—s, s) - l/gm—s-l, s+1

(slm) = Jn/Ys Gm—s—1, s41+

* Ibid., § 160.
+ Ibid., § 144.
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It follows that
(slp, u) = gp, u/gs, u gp—-s—-l, u+s+1

and
Gla) = C7" Yamrmt, r41) = Gneret, 01/ Gs—rm1, 141 Gims1, 41
Putting
3.73 PR =gt (P =),
so that

o+ 1=1, 77 +2=2 and —1,n =y,

we have simply

3.74 Glo) =7,n[75s s n.

It will be found that 1.42 is satisfied identically. By 1.25,

7,7 = 1.

We therefore say
g1 =1 (and g_,,=1).

By 2.64,
3.75 In — (Olm) (Olm—l, 1) (Olm-—& 2) o (Oll, m—l)-
Similarly, by 3.72 with s = m — 1,

I = (m—llm) Im—1
3.76 — (m—llm) (m—-Zlm_]) (m——ftlm_z) . (Oll)'

By 1.8, reciprocal polytopes have the same g,. Thus 3.75 and 3.76 are reciprocal

formulee.
It is interesting to note that the first few ¢’s are rational functions of the &’s (3.45),

namely,
(g1 =1, implying ¢g_;,,=1;
.(]0:‘13 N Go,u = 17
3.77 'i .(/1 = 25 29 91, w = 2 ;
go = le’ s 92,0 = 2ku+1 ;
/1 1 > /< 1 1 \
=4f|— -+ — —3 ) 9 ‘ 11,:4’ 7 L .
L [/3 \kl _}— ]{;2 ? 93’ ku+1 + ku+? 2/

The value of g; comes by substituting 3.72 in EULER’S theorem
Cls) — (ls) + Cls) = 2.

The higher ¢’s are transcendental functions.
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3.8. In practice, we count the number of vertices of a polytope (given by co-ordinates,
as in 3.6), deduce g,, by means of 3.75, and thence (°|,,) by 3.72.
For «,, (°|,) =m +1. So

G = (m + 1) !, gs = (S -+ 1) !> g;n——s——l,s+1 = (m - 8) !
and
3.81 ; Cl) = (),

the elements being «,.

For B,, (].) = 2m, so that g, = 2"m!,  Gp_s 1,01 = 2" (m—s—1)! and
(since, for s<m, I, = a,), ¢, = (s +1)!.

Thus )
3.82 (slm) = 2S+1 (srﬁl) (8< {’n)7
the elements being again «,.

Y., 18 reciprocal to B,,. So ¢, = 2"m! again, and
3.83 (L) =2 () (s>—1),

the elements being v,.

The elements of 3, are all v,, the number at a vertex being equal to the number of
s8N By, V2., 2°("71).

The results for the remaining finite polytopes are as follows :—

Im (*fm) (*fm) (|m) Clm)
0 2k b k
{3, 5} 120 12 30 20
{5, 3} 120 20 30 12
{3, 3, 5 14400 120 720 1200 600
{5, 3, 3} 14400 600 1200 720 120
{3, 4, 3} 1152 24 96 96 24

3.9. The values of the circum-radii of the regular polytopes follow directly from the
co-ordinates of the vertices, or can be calculated by means of 2.93. The other radii,
R, are then given by 2.73. For all degenerate polytopes,

an = o,
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For the finite polytopes, the values are as follows :—
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OR’m lRm 2Rm SRm an
1 1 1
! /_1_ 1 - —— /\/1< )
|V 2( m+1) P\ ml
1 /\/1 1 ’ m
Bm '\/2 g—-—-—n 1 [76< ]
Yom %VIi% ‘%\/m —Mn [’l'&> _']-]
T
{k} 1 cosec 772 $ cot %
(3,5} gt LA A o «/ 3 (%— to) <8l
{5, 3} 1v/37 32 | 35 73 «/% (%’r -3 ) [(n>—1]
. / 1
(3,3, 5) : e vis [ | A i) <
{5,3, 3} \/ 272 14/8t3 | 57ih vt | x2 ,\/% <*|:3 — 3 1 n> [n>—1]
{3, 4,3} 1 3 | V3 %
(By 3.61,
=1 (v5+1) =13+ v5) w542,
=1 (7 + 3 4/5), 5:%—(5\/5441) and 17 =} (134/5 + 29).)
4. The Generalized Prism.
4.1. Let |
(@), oor 3,)y (@ppys oon B)s (@ggrs -o- 2,),  €YC,,
be the vertices of certain finite polytopes
4.11 ny, mng, Mg, ete.,
respectively. Then the new polytope whose vertices are
(T o By Lpyyy oor Bys By oee Tps wnv)
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(in the notation of 3.6) is called the “ prism ” having the ‘ constituents ” 4.11. Tt is
denoted by the symbol
4.12 me, 0@, O, ...

4.2. The following properties are immediate :—

4.21. The prism is uniform if its constituents are uniform and of equal edge-length.

4.22. The order of the constituents is immaterial, and any constituents which are
themselves prisms can be replaced by their own constituents.

4.23. Constituents «, can be omitted.

4.24. A number # of constituents «, (= y,) can be replaced by v,.

4.25. Constituents v, Yus Yu --- can be replaced bY Y, iwiw s ... -

4.26. A prism with only one constituent is that constituent itself.

4.27. The number of dimensions of the prism is the sum of the numbers of dimensions
of the constituents.

4.28. The number of vertices is the product of the numbers of vertices of the
constituents.

4.29. The square of the circum-radius is equal to the sum of the squares of the
circum-radii of the constituents.

In symbols, 4.27, 4.28, 4.29 can be written :

4.27 m ==my; + my +mg 4+ ..sy
4.28 (0| ) = <1> (ul<2> o|§33)) .
4.29 (oRm)2 = (oRi,i,’)z -+ (oRg:)z -+ (OR%))Z + ...

4.3. It is also true that the m-dimensional content of the prism is equal to the product
of the contents of the constituents; and that the magnitude of the vertex angle,
measured as a fraction of the total angle at a point in m dimensions, is equal to the
product of the magnitudes of the vertex angles of the constituents.

These two theorems are respectively very easy and very hard to prove. Neither is
required later, so the proofs are omitted.

4.4. As three-dimensional examples of the generalized prism (a, b, ¢, b being lengths) :

4.41 [oy@8, a0,  ay€]
is the rectangular solid of edges a, b, ¢; and
[{k}, “lk]

is the right prism of height % on a regular k-gon (of side 1) as base. This right prism is
uniform (“ pure Archimedean ) if A = 1.
VOL. CCXXIX.—A 27z
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The four-dimensional uniform prism

[{k}, {3

is bounded by k& [{k}, o, ]’s and k' [{k}, «,]’s. It can be constructed as follows. Take
the & %'-gonal prisms [{k'}, «,] and place them base to base, bending them about the
planes of the intermediate bases until the two extreme bases meet, the whole forming a
kind of ring. Make an analogous ring by means of the &’ k-gonal prisms [{£}, ,]. Each
of these rings has k%’ untouched squares, and the complete polytope is made by inter-
locking the rings in such a way that the two sets of squares are brought into coincidence.

4.5. If a generalized prism is uniform (4.21), its vertex figure is obtained by taking
the vertex figures of the constituents, in independent spaces, and joining every vertex
of every one (of these vertex figures) to every vertex of every other, by lines of length
V2 (ve., by B,’s); this construction being possible in m; + my + my + ... — 1
dimensions.

If the uniform prism has only two constituents, IIj;) and II{), we give its vertex
figure the special symbol
(Hmlg)l,l Tnm,(—zi,l)'
e.g.,

(“1 72 oco)

denotes the isosceles triangle, of sides 1, 4/2, 4/2, which is the vertex figure of the
triangular prism

[oeg, o]
4.6. The elements of the prism 4.12 consist of all possible prisms of the form
4.61 e, e, e, L,

where II{) is an element of II), and so on. By considering the number of ways in
which the element 4.61 can occur, we find ‘

462 ()= T Z.IDCED D)y =)
g 0

(In verification of 1.22, we have

- m my Mg my
T (=1)y(ln)= T Z I .. (—1ytmtnte Oy @) |9 ...
r=20 7,=017,=07,=0
= T (). 2 (1) E (=)
=1.1.1...=1)

In particular, the number of bounding figures is

4.63 (") = TG A TR A ) A
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the bounding figures being

464 [P, IO, MY

mgd **°

1[I0, me_, m®, ..., (19, 09, 09, .1, ....

4.7. Suppose the prism 4.12 to have been reduced (if necessary) in accordance with
4.24 and 4.25, so that not more than one constituentis a y. Let ¢%), ¢, g%, ete.,
be the orders of the groups of symmetries of the constituents. Then the order of the
group of symmetries of the prism is evidently

4.71 = Al gD 9 ...

where A = 1 if the constituents are all different, but A = N! N’! ... if N constituents
are identical, N’ others identical, and so on, since the identical constituents can be
permuted among themselves.

For instance, if

U,y = [“7» q] (]9 +q> 0*)7
4.72 Gpiq = (1 + €pg) (p+1!(¢g+1!
where -
0 it p g,
4.73 €y = {
1 it p=qg.

~ 4.8. Precisely as in 4.1, we can define the “ degenerate prism ”

4.81. ' Hm—!—l - [Hm,+17 Hm(zz—t)-lz Hm(f-?-l,]
whose constituents
Hm(,l-i)—la Hm +1s ngzl: etc.,
are degenerate polytopes.
4.21, 4.22 and 4.26 still apply ; but 4.24, 4.25 and 4.27 must be replaced respectively

by :—

4.82. A number # of constituents 3, can be replaced by 3,..
4.83. Constituents &,,1, 8u41, Spry1s -.. can be replaced by 8, ppnrp... 1.
4.84. The number of dimensions of the space filled by the prism is the sum of the

numbers of dimensions of the spaces filled by the constituents.

The description 4.5 of the vertex figure of a uniform prism still applies, except that the
vertex figures of the constituents now lie in mutually perpendicular spaces (of m,, ms,
Mg, ... dimensions) having a common point, which point is the centre of each constituent’s
vertex ﬁgurei this construction being possible in m = m, + my + m3 4 ... dimensions.

4.9. The elements of the degenerate prism 4.81 consist of all possible (finite) prisms
of the form 4.61, where now II{? is an element of II{Y ., (r, = m,). In particular,
the bounding figures are of the form 4.12.

* In order to cover the case p = 0= g, 4.72 must be replaced by

Ip+¢ = (1 4 epg — gpogg) (P + 1) ! (4 + 1!
272
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To take a simple example,
[85a, 83D, 38,¢]
is the partition of three-dimensional space into rectangular solids 4.41. In particular

(by 4.82 and 4.83)
[82’ 829 82] = [83’ 82] = 84'

(*““ Prisms ” whose constituents are partly finite and partly degenerate may be called
“ semi-degenerate,” but are uninteresting.)

5. Simple Truncation.

5.1. A polytope which consists of the portion of m-space common to two concentric
and actually reciprocal regular polytopes (II,, and II’,) is called a * truncation ” (of
IT,, or IT’,). If the radius of reciprocation has the particular value ,R,, so that the
reciprocating sphere-analogue touches the n-dimensional elements of II,, and
(therefore) the (m — n — 1)-dimensional elements of II’,, the truncation is said to
be ““ simple,” and is denoted by

5.11 tn Hm or tm—-n—l H,m’

t,11,, could have been defined simply as the polytope whose vertices are the centres
of the II,’s of II,,. But the mental picture of a fixed II,, and a gradually diminishing
reciprocal I1’,, is useful.

Genuine truncations are obtained for values of % from 0 to m — 1.

5’12 tO Hm = Hm a‘nd tm—l Hm = H,m'

t, II,, is merely a point, namely, the centre of I1,,. By 5.11, ¢, I, is the same as ¢_, IT',, ;

so we must take
t—-—l Hm

to mean the centre too.

As a familiar example of a truncation, ¢,B; (or #ys) is the cuboctahedron. Still more
simply ,
5.13 t, (k) = (k).

5.2. The properties of ¢,1I,, are functions of the properties of II,, and will be dis-
tinguished from them by the suffix n, e.g., (}|..)» means the number of edges of ¢,11 .
- It follows from the definition (5.1) that

5.21 (e = (")

Consider a fixed II,, and a gradually shrinking reciprocal II’, (obtained by means of
a gradually shrinking reciprocating sphere-analogue). While the radius of reciprocation
is diminishing from the value (R,, II,, has all its corners cut off and replaced by new
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bounding figures similar to II,_, ;. These new bounding figures increase in size until
the position corresponding to ¢ I1,, is reached. Then they too begin to be truncated,
appearing as ¢ II,,_, ,’s in ¢, I1,,. Thus it is clear that the bounding figures of ¢,1I,
are of two kinds,

5-22 tn 1-[m-—l a‘nd tn—-l 1—[m—l, 1>

corresponding respectively to the bounding figures and vertices of II,,.
The (m — 2)-dimensional elements of ¢, 11 ,, being the bounding figures of its bounding
figures, must consequently be of the three kinds

tn 1-Im—2’ tn—l Hm—z, 1> tn—-2 Hm—-2, 2¢

Similarly, or by induction, it is easy to see that all possible s-dimensional elements are
of the form
5.23 Z | P

for a certain set of values of .
In order that.II, , may have a meaning,

5.24 O=u=m—s;

and in order that ¢,_,II, , may be a genuine truncation,

O=n—u=ss—1,
1.e.,

5.25 n—s+1l=u=smn

The number of elements #,_, IT, ,, for each u, is equal to the number of ways in which
the figure II, , can occur in II,. Now, II, , is an s-dimensional element of II,_, ,,
which, being the uwth vertex figure of II,, indicates the form of the neighbourhood
of an element II,_, (2.6). Hence II,,_, , occurs (*7'|,) times, and so II, , must occur
(1) (o, ) times.

Thus the total number of s-dimensional elements of £, 1I,, is

m—s, n
5.26 Clan =2 (“7[,) Clm-wu)  (s>0)
0, n—8+1
m—s, n % = min. (m—s, n)
where b stands for b ,
0, n—8-+1 % = maX. (0, n—s+1)

the typical element for each u being ¢,_,1I, ,.
Note that 5.26 does not include 5.21.
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2.61 and 2.63 respectively enable 5.26 to be exhibited in two alternative forms :

m—s, n

5.27 Clan = 2 (“"'[,) (*4],),
0, n—st1
528 (S,m)n - 0 n§;+1 (unll“'“) (8+u’m)-

By 5.21, applied to ¢ =1,_, 11, , ; for each u, (°|2), = (*,.)-
Hence, by 1.41 with r = 0, ,

(Olm)n (g!m)n =X (Olg)n (s,zz)n

a

m—s,n

= % (") () Clau ) (5.26)

0, n~—s+41

m—S8, n

= py (u_ljm) (n—ujm—-u, u) (n—s-u!m-u, u) (14:1)

0,n—s+41

m—s,n

= 2 () () (aZulm ) - (2.63)

0,n—s+1

Cl) () €1 ) (2.62)

0, n—s+1

I

Finally, using 5.21,

Glade = 2 (*71,) (5%,

) 0,n—s+41
?.6.,
1 T om~-s,n 1 1
5.29 (3‘ ,m—l’ 1)" = 0 'n§s+l (u—. ’”) (8+u—n— ,m—n~1,n+1)'

5.3. Since II,; and II’, have the same symmetries, these symmetries must belong
also to ¢,II,,. The equivalence of the vertices of ¢,1II,, therefore follows from the
equivalence of the II,’s of II,, (3.2). Since simple truncations are bounded by simple
truncations, it is thus obvious (by induction) that ¢, II,, is uniform.

We now seek to justify the assumption that the vertex figure of ¢,1II,, is

531 \[H’m Hm—n—l,n+1]’

IT’, having the special meaning assigned in 3.32.
This is trivially true when n = 0 or n = m — 1, and therefore when m = 2, so we

have a basis for induction. Accordingly, we assume [IT’,, T,_,_; ,.,] to be the
vertex figure of ¢, I, for 0 = n < s < m, and consequently

5'32 [H,n—u, us Hs+u—n—],n+1]

to be the vertex figure of ¢,_, II, ,for0 = n —u < s < m.
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For each value of u satisfying 5.24 and 5.25, the vertex figure of ¢, II,, possesses, by
5.29,

’ (M) O mnt, ma)
(s — 1)-dimensional elements 5.32. We have to show that these are precisely the (s — 1)-
dimensional elements of the prism 5.31.

By 4.61, the typical element of 5.31 is

5.33 [Hln, n—ay) Hfz, n+l]3

T, .-, being (by 3.31, with » for m and n — r, for ) the r;-dimensional element of II’,.
Since the number of I, ,_,’s in II’, is (*™"7!|,),* while the number of II, ,,.’s in
Wpnt,nt1 18 (%|m—n—1,241), it follows (by 4.62) that the number of (r, 4- r;)-dimen-
sional elements 5.33 in 5.31 is

(”_rl—lln) (nlm-n——l,n+]))
where

Pl 0=rn =mn,
5.34

O==rn=m—n—1.

We can identify the elements 5.32 and 5.33, and the number of times they occur, by

putting
ry=n—u,
e =8 +u—n—1.

The inequalities 5.34 then become

0=u = n,
n—8s+1l=u=m-—s,

which are together equivalent to 5.24 and 5.25.

The argument, that 5.81 is consequently the vertex figure of ¢,IL,,, (if not entirely
justifiable, as assuming that the elements of such a prism cannot be re-arranged to form
a new polytope,) appears convincing, especially as the vertex figure of £, II,, must possess
the symmetries of both II, and II,,_,_y .41

Putting this result in terms of ScHLAFLI symbols, the vertex figure of
’ ba{lory Koy oo Kop_gy Ko}
is

5.35 [ Fu_, ku_sy +.. ko, Ky} 2 cOS = {kpyos Knyss oo km—gy km_1}2 cos T ] .
kn kn+1

(The two constituents of this prism are the vertex figures of

{kny by—yy -oo ko, Ky} and {Fns1s Fngas oo Kpas k, 1}

respectively.)

* By 1.351 (with n for m, 7, for s’ and consequently » — 7, — 1 for s), the number of
(n — 7, — 1)-dimensional elements of II, is the same as the number of r,-dimensional elements of IT’,
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5.4. Let O be the centre of a II,.; of I, ; Q the centre of a II,_, belonging to this
m,.;; and P, P’ the centres of the two II,’s of the II,,,; which meet at this II,_,.

Let
(@)a

be the edge-length of the actual truncation ¢,II,. Then we have PP’ = (a),,
OP = an-l—l: OQ = n—an+1’ PQ = n—1Rm and

? OPQ is a right angle.

Hence

nRnw n_an
5.4:]. (a)n =S 2 n_an an+1/n—1Rn+1-
n'an#! Q

We shall in future regard ¢,II,, as having been
magnified until its edge-length is unity.
nRni maftn Let (oR,.). be the circum-radius of ¢, IT,, (for unit
edge). Then, since obviously

Fia. 2.
(oRm)n (a')n = an:
5.41 gives
5.42 (ORm)n = n——lR’n-}-l an/2 n-—an an+1-

5.5. The following simple truncations happen to be regular, as may be seen (by
4.25) from their vertex figures, here placed alongside :—

liog = P [og; &y ] = Ba
685 = 8, [31, Bl] = P ’\/2
tBs = byys = {3, 4, 3} [“1, (32] = [B2, 1] = 73

6{3,3,4,3} = 1,0, =1;{3,4, 3,3} = {3, 4, 3, 3} | [ag, Y5] = [Ba, B2] = [¥3, tu] =4
By 4.71, the order of the group of symmetries of the vertex figure 5.31 is

(Im-1, )0 = M Gnen—1, nt1>

where

A =1 in general,
but

A=2 if II',= I, _p 1 ns1
(which implies

m=2n-+1 and T, = IL).
Also

A=) Mh=vie and Ty pyipi1 = Yn-u-10
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(which implies
m,=1{3,...3, 4k, k,.1,4,8,...3 with k,=k,.),

since this case was excluded in formulating 4.71. Hence, by 2.41, 5.21 and 3.72, the
order of the group of symmetries of 7,11, is

5.51 (Ym)n = 2G>
where
j A =1 In general,

5.52 A=2 for {,u9,.1,

L7\ =3 for By =ty (= {3, 4, 3}).

5.6. Here is a summary of the chief properties of the simple truncations (excluding
those truncations which are regular) :—

Hm Hm—-l, 1 (Olm) gm ORnL
m m —mn)(n 1
o, [ty et 1] w1 (I +em@nsn) (m + 1) ! M( 2 (m)‘(|“ 1_)l— )
tan [‘xm Bm-—n-—l] 2ntt (nT—l) 2" m! /\/’ﬂ B} 1 (7’& <m—‘1)
bu¥m [Bas ®mn—1] | 2" 7" (% 2" m ! M il g 4 (n>0)
tnsm [Bn? Bm-n——l] o @ @®
t, {3, 5} =1, {5, 3} [oy7, o] 30 120 T
tl {3> 6} = tl {67 3} [0(1'\/3, 0‘1] @ ® w0
t {3, 3, 5} = 1, {5, 3, 3} [{5}, o] 720 14400 5trh
t, {5, 3, 3} =1, {3, 3, 5} [otg, 0ty7] 1200 14400 /37
1 08,4,3 =10,{3, 4,3 || [1aV/2, 4] 96 1152 V3
tl {37 47 37 3} == t3 {37 3> 47 3} [“3 '\/2? “IJ ®© @ o
82 {37 3> 4> 3} == t2 {37 47 3, 3} { [“2\/2, O('2] ® ®© @®
5.7. Let
(17, 07)
stand for

(1,...1,0,...0) with pones and ¢ zeros.

If p > 0 and ¢ > 0, the (?}?) points
(17, 07)

are the vertices of ¢, ,a,,, 1A/2(=1¢_ 0,.,.14/2). For, of these points, those
nearest to (17 ; 07) are (17, 0; 1, 07'), namely the vertices of [, 5, «,_1]4/2.
VOL. CCXXIX.—A 3 A
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Again, the 27(?}?) points
+ (17, 07)

are the vertices of #,_; By, V2 (= t,v,141/2). For, of these points, those nearest to
(175 07) are (1*7', 0; =+ 1, 07'), namely the vertices of [«,_;, B,] 1/2.
Thus, and similarly, we have the following co-ordinates :—

tn‘xm V/2 . (1n+1, Om—n)
or (lm—n, On+1).
tn.Bm '\/2 : + (1n+1, Om—n—l) (7’& <m — 1).
taYm V/2 + (17", 0") (n > 0).
tngm \/2 . (ln, Om—n——l) (mod. 2)
0<n<m — 1).
or (1™="=170" (mod. 2)

-1}/
ty {3, 5} 2% : {i 5 L, =5,
+ (2, 0,0)

( (T’ 0) - 7_1’ - 1),’
or % 1,1, —1, —1),
L 1«10, —7).

4 {3,612 : (1,0, — 1) (mod. 2) ; #; + %, + x5 =0
or (1, 0, 0) (mod. 2); x, 4 x4 + x5 = 1.
[+ (@2r,2,0,0) (48 "points),
+ (27, 7, 1, =71 (192 ,, ),
—_—}: 2’ 2’ bl 1 ! 192 » 3
t, (3. 3, 5} 21 : (.2, = 1) ( )
+ (72: '\/5: Ty O)’ (96 T ))
+ (457, 1, =71, 0) 96 ,, ),
+ (%, 7%, 7L, 7Y 96 ,, ).
(720).

* Cf. 8cHOUTE’s “‘ Analytical treatment of the polytopes ...” (loc. cit. in Preface), § 123.
T Ibid., § 160. :
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(L (27, 2771, 0, 0) (48 points),
+ (2,22 0) 32 ,,.)
+(3,1,1,1) (64 ,, )
+ (4/5, /5,1, 1), 96 -,, ).
+ (38, 7, v, 0) 96 ,
t,{5,8,8 2r72%: < ( ) , ( )
+ (%, 4/5, 772, 0) 96 ,, ),
+ (7%, 2, 1, v 72 (192 ,, ).
+ (45,2, 7, v71) (r92 ,, ),
:}: (2T, 1, T‘]‘, 1—2)' (192 ’ );
L:t (%, 7, 2774, 1) (192 ,, ),
(1200)
, {3, 4, 3) \/2’!’ : -+ (2, 1, 1, 0).
t,{3,4, 3,342 (2, £1, £ 1, 0) (mod. 4).

(£ 2, £ 2, £+ 2, 0) (mod. 6),

1,43,8,4,312 {
(£3, 1, +1, £ 1) (mod. 6).

5.8. The general theory of truncation can be extended to the case where II,,, though
not regular, has a uth vertex figure, » being greater than n. For in this case, by 3.23,
the II,’s are still equivalent, besides being regular and equal. We now define

tn Hm

as having for vertices the centres of these II,’s. Just as in 5.3, we can show that
¢, 11,, 18 uniform, its vertex figure being

[H,m Hm-—n— 1, n+1] .

Formule 5.42 and 5.21 continue to apply; and so does 5.28, provided we allow
tn—y Uy, to take several forms (for the same value of u) corresponding to the various
kinds of II,,, which may occur in II,.

5.9. By 4.21 and 5.35, tt, {ki, ko, «uvy ks, by} exists if k, = k,,,, and then its
vertex figure is found to be

|:<{kn——2> kn—{i: sy km k1}2 cos k:—l —Jz {‘Icn-}-f;, kn+4a sy km—-2> km—l} 2 cos -/C—:E_:;)’ %y 2 cosi:la

* Ibid., § 160.
+ Ibid., § 144,
3 A2
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in the notation of 4.5.% Except in the trivial case of
bt 8y = 1,83 = 33,

it always happens that k, = 3. The actual cases are tabulated below :

II,.. M, 1 (lm)- R T
A [(otg1 =77 Cm—n_2), %1] "3 (") «/(1 +2n — g%—i—i)v
btuBm (0 < m — 2) [(tn-1"72 Bm—n—2), 1] 282 (3) (%) \/(2” + 1)
Ltym (> 1) [(Baor 7 %m—n—s)s 1] | 27" F1(3) (2T V(2m —2n — 1)
Lty (1< <m—2) || [(Baci=75 Bm—n-2)s ] @ ®
4t {3, 3, 5} [(eta™ 77 @t0), 1] 3600 /(19 + 8 4/5)

6. hy,, and h3,,, o,h and ex,,.

0.1. In order to establish the uniformity of a polytope whose vertices are a given
set of points in m dimensions, we have to prove :—

(1) That the points are equivalent.

(i) That those points which are nearest to a particular point A (of the set) are
sufficient to determine an (m — 1)-dimensional polytope. ,

(iii) That the vertices of a typical bounding figure of each kind (.e., one typical
bounding figure from every set which are known to be equivalent among them-
selves) of this (m — 1)-dimensional polytope, along with the point A and certain
other points of the original set, are the complete set of vertices of some uniform
(m — 1)-dimensional polytope.

This practical rule will be applied to special cases in the present chapter, and in
chapter 9.

0.2. Tt is well known that the vertices of the cube (y;) are also the vertices of two
concentric tetrahedra (x34/2). It is almost equally obvious that the vertices of v,
are also the vertices of two concentric B,4/2’s. We accordingly write

bys = Bar
by = ag,
and seek a generalization, %y, (short for  hemi-y,, ).

* Thus ¢,t,I1,, exists if [Ty, » = 11, n41, and then its vertex figure is [(I'n—1"72 Hm—n—2,n+2), 1, nl.
T Since k&, = 3, this is simply /4 ((R,),2 — 1, (,R,,), being given in the last column of 5.6.
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In considering groups of symmetries, we have to suppose hy, = {2} (the ** digon ).
For all other purposes, we drop a dimension and say

Lo kYg = .
Similarly
‘ hy, = a,.

In the notation of 5.7, the 5 (™) = 2™ points
0

6.21 (r,om7; r=0,1,2...m,

are the vertices of v,,, since they can be obtained from + (1”) by adding 1 to every
co-ordinate and then halving throughout.
We define :
Chy, A2

as having for vertices half these points, namely the 2" points
6.22 1, om=);  r=0,1,... [%]

where, as usual, [7—;1 means “ the greatest integer not greater than 7_12_@.,,

Applying the rule 6.1, we have :—

(i) These 2"~' points are equivalent, since the operation of subtracting two of the
co-ordinates from unity, while leaving the set of points unchanged as a whole, changes,
after a sufficient number of applications, any point of the set into any other.

(i) Taking the typical point A to be (1°, 0™) or (O, 0, ... 0, 0), the nearest points
(distant 4/2) are (12, 0"~%), namely the vertices of #,x,_14/2.

(iif) #op-14/2 has just two kinds of bounding figures:
hom_s4/2, with vertices (1% 0™~%; 0),
{ Am-2 /2, ” (1; 1,0m°3).
These points, along with A, occur among the vertices of
{lwm_l ve: (1%, om=2=1; 0); r=0,1,... [n_}:j],
Ame1 A2 (O7), (13 1,079, '
respectively. But hys is uniform. Hence, by induction, %y, is uniform ; its vertex

figure being

tlocm_l.
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By subtracting one of the co-ordinates from unity, it is clear that the rest of the
points 6.21, namely

6.23 (1241 Om_'z;»—1) . r—0.1 [m-—l]
’ > 9 Ly eee 2 .

are the vertices of the complementary hy,,/2.
6.3. By 3.81 and 5.28, the numerical properties of #,«,,_, are

Clns) | Clad) | ) (5>2)
() 3 | (M 4 (s M)
f tlas—l ? Ag—1

The properties of ky,, can now be deduced by means of 2.52, since we know that

(Oim) J— 2m—1.
Making “ (*~*|,u—1,1) " refer to fa,,_;, the results are as follows :—
W) | e | e (1) (5>2)
grt | oanr(n) | 2ni(E) | 2T+ 2
| ; '
1 I

|
%o 1 hYs‘ \ s
Putting s = m — 1, we see that (if m > 3) hy,, is bounded by
2m hym—1’s and 2" ', o ’s.

On referring to the co-ordinates, it is found that the centres of the bounding Ay,,_,’s
and of the bounding «,,_,’s are the vertices of 8, X and hy, X respectively. This is a
particular case of the phenomenon called ‘“ semi-reciprocation,” explained in the next

chapter (7.8)..
6.4. By 3.9, the circum-radius of v,, (and therefore of ky,,1/2) is §4/m. Hence that

of hy,, must be
—1 d@,
oRp = % 5

The order of the group of symmetries is given by 2.41 and 5.6 :

gm =S 2m-—-1 . (1 + E(m_l)g)m!
= (1 +&n) 2" m!.

Except when m = 4, this order is, as we should expect, half that of v,.
6.5. The vertices of 3, are (by 3.6) the points

('/Bla wz: xm—l)

whose co-ordinates are every possible set of m — 1 integers. These points fall into




REGULAR-PRISMATIC VERTEX FIGURES. 365

two categories, according as their co-ordinates have an even or odd sum. The points
in either category are the vertices of a degenerate polytope called

ksm \/2’
Let us apply 6.1 to the former set—
6.51 (Ty, Ty oov Tpo) s T+ 4 .oo + Ty = 0 (mod. 2).

(1) These points are equivalent, by means of the operation of adding 1 to each
of two co-ordinates. :
(i) Taking A at the origin (0™~'), the nearest points are =+ (1%, 0™~®), namely the
vertices of ¢, 8,1 /2.
(111) 4 Pum—1 /2 has two kinds of bounding figures :
{tlocm_z 7/2, with vertices (1%, 0"7?),
Bm—2 /2, with vertices (1; 41, 0m7®).

These points, along with A, occur among the vertices of

(BYmoy /2 (A%, 0" %Y r=0,1, ...

m - l;—J
o2
B V21 (0"7), (15 & 1,0"77), (2; 0"7%),
respectively. Hence A3, is uniform ; its vertex figure being
bBm—1-
6.6. Since, by 5.5, ¢,8, = {3, 4, 3}, it follows that
k35 = {3, 3, 4, 3).
h3g = 33,
{ B8y = 8,4/2.

Note also

h3, (the system of tetrahedra and octahedra filling three-dimensional space) is (by 1.9)
“ super-Archimedean,” as also are

B (the cuboctahedron, vertex figure of A3,),
t, {3, 5} (the icosidodecahedron),

t, {3, 6} (the system of triangles and hexagons, two and two at each vertex,
filling a plane).

Since ¢, 8,1 is bounded by 2”7' fia,,_.’s and 2 (m — 1) B,,_.’s, it follows that A4S,
has 2"°' hy,_,’s and 2 (m — 1) B,,—,’s meeting at each vertex. On referring to the
co-ordinates, it is found that the centres of the hy,,_,’s and of the p,,_,’s are the vertices
of §,,X and h3,, respectively.
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1 0.7. Since hy,, and A3, have uniform second vertex figures ([oy, «,_5] and [y, B,,_s]
respectively), it follows from 5.8 that they each have two simple truncations.

[ ¢y, has vertex figure [oy, oy, tp_s] = [Bas %pms],

-{’ tzkYm 59 ) {“23 (“0 _-4—/2— o‘m—4)]s
{ tlkgm 93 59 [“1, 258) Bm—3] - [BZ) ﬁm—3]3
Ltzkam ’s s [‘127 (MOT ﬁm—4):’-

On comparing with 5.6, we thus find that

{tlk\’m = LoYms
tlksm == izsm.

6.8. Let
anh /2 (“a,-hedroid )

denote the section of 3, ., or of A3,,., /2 by the m-space

 + 2+ ... +2p F 2 =0,
that is, the degenerate (m -+ 1)-dimensional polytope whose vertices are the points
6.81 (@1, @2y +ee Tmg) @+ %+ e Ty = 0.

Of these points, those nearest to (i.e., distant 4/2 from) the typical point (0™*') are
6.82 (1, "1, — 1)

The m-dimensional polytope whose vertices are the m (m - 1) points 6.82 will be

called
e,/ 2 (*“ expanded o, 7).

Of these points, those nearest to (1; 0"~ ;—1) are
(0; 1,0™?%; —1) and (1; 0™7% —1; 0),

namely the vertices of an (m — 1)-dimensional polytope which may be described as an
“ antiprism ” on «,_, 4/2 as base. This'antiprism (when reduced in linear dimensions
by 1:4/2) is denoted by

6.83 (2

5 Olm—z)-

It is bounded by two «,,_,’s, reciprocally situated in parallel (m — 2)-spaces, together
with (";1)  (¢n—1—vi—%m_n—2)’s €ach joining an «,_, of the first «,_, to the reciprocally
corresponding «,,_,_, of the second, for all relevant values of .
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By considering the points
6.84 (1, On, Om-—n-—l’ . 1),

we see that ex,, is bounded by (71]) prisms [o,, «y_n—1], for all values of n from 0 to
m — 1. Therefore ex,, is uniform, its vertex figure being the antiprism 6.83.

Hence also the (s — 1)-dimensional elements of ex, consist of (21}) (;1i) prisms
[#ns @5_p—1], for all values of » from 0 to s — 1.

Now, the vertices 6.84 of a typical bounding figure of the ex,, /2 (vertices 6.82) occur,
along with (0”*'), among the points

(17, or—rtty gm=n=r — 17 r = 0, 1, ... min. (n + 1, m — n).

These points are seen to be the vertices of the ¢,x, 4/2 obtained from (1**!, 0"~") by
subtracting 1 from each of the first n | 1 co-ordinates and then reversing all the signs.
It follows by 6.1 that «,A is uniform. The vertex figure of «,his ex,, and its bounding
figures consist of all the simple truncations of «,,, each vertex being surrounded by

ﬁii) tn“m’s (O =n=m— 1)'

Also the s-dimensional elements of «,/ at one vertex consist of

1) Gh) te’s (0=n=s—1).

The figure obtained by drawing sphere-analogues (of unit diameter) with centres at
all the vertices of «,/h, seems to represent the closest possible packing of an infinity
of rigid sphere-analogues in m dimensions. (The three-dimensional case is known as
“normal piling.””) The number of sphere-analogues which touch a given one is thus
m (m -+ 1), the number of vertices of e,

Since a,,/ possesses a second vertex figure, it has (by 5.8) a truncation

tlamh,
bounded by ex,’s and #¢,x,’s, whose vertex figure is
[o1; (s 2 Up—z) ]+

0.9. ex,, can be constructed as follows.* Take «,, (supposed of unit edge), and move
all its bounding «,,_,’s symmetrically away from its centre, each through a distance
equal to the circum-radius of «,. Two «,_,’s which were originally adjacent are now
separated to such an extent that their bounding «,_.’s, one of each, which originally
coincided, now appear in parallel (m — 2)-spaces at unit distance apart. These two
-2’8 can be connected by a prism [,,_,, «;]. The new polytope is still not completely

* This construction is due to Mgrs. BooLe Storr (see Preface). The “e” of ea, is short for
her “epy.”
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bounded until we have inserted prisms [«,_5 o5], ... [0y, ®,_.], and finally «,_,’s
(corresponding to the old vertices).

Since the same ex,, can be constructed from the reciprocal «,, ex,, has twice as many
symmetries as a,. Thus
I =2 (m 4+ 1)! (m > 1).

This result can also be obtained by 2.41 ; since
(°]n) = m (m + 1),

while the antiprism 6.83 possesses the (m — 1) ! symmetries of a,,_, combined with the

reflection in its own centre.
Note the following particular cases :—

exg =t {3, ' azh = hd,,
eay = {6}, ash = {3, 6},
60(1 == (:’)1\/2, [ mllt == 82.

-
7. ILY and ny,.

7.1. Let
I;+

denote the uniform (r + 1)-dimensional polytope (if such exists) whose vertex figure is
a given (finite) polytope II,, and

I
the uniform (r + u)-dimensional polytope (if there is one) whose vertex figure is II,**~".
It follows from this definition, that the nth vertex figure of IT}* is
7.11 ILre—n,

IT;}° being the same as II,.

The particular cases when II, is regular are as follows :—

(21 2 cos w/k) ™= {k}, (14/8)"* = {8, 6},
% = Uy (294/8)™" = {6, 3},
B = Brius (a7)** = {8, 8, 5},
(/@) = vy, (as7)™ = {5, 3, 8},
(BrV/2)* = 3,44, (2/2)TE =t = {8, 4, 3},
(aqv)*? = {8, 5}, (xan/@) T = 37 = {3, 3, 4, 3},
("‘2"')+1 = {5, 3}, (“3\/2)+2 = 'Y4+1 = {3, 4, 3, 3}

Note that («,@)** and («,a)*" are reciprocal.
As a further example of the notation, (ex,)*" = w,h.
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Assuming II}! to have (by definition) unit edges («;), we can assert that every
u-dimensional element of II;**is

O = ()" = (0) ™™ = oy
Making the convention that
7.12 I, =, if n<wu,
it follows that every n-dimensional element of II;}*is of the form
7.13 I,
In particular, the bounding figures are of the form IL"%.

7.2. In 5.8 we remarked that II,, has an nth truncation if it has an (n + 1)th vertex
figure. This condition is satisfied if II,, = IL}"*!, since then Il,_,_1 41 = IL,.

By 5.31, the vertex figure of ¢, IL}**'* is [(II*i*'), IL], 4.e., [y, II,]. Thus we
may write
7.21 , b I+ = [, IL]TL

By 3.9 and 4.29, the squared circum-radius of [«,, II,]is

b (1— ) + R

Hence, by 2.84, II***! cannot exist if

(- ) >

©.6., if

1 . 2
7.22 L4 ooy <26 )2

By 2.83, it can only be degenerate in the critical case when

1
SATE I

since then [«,, II,] must have und circum-radius.
The inequality 7.22 can alternatively be obtained as follows. By 2.83 and 2.81,

Bo= A3 (1 7)o Rerr= A3 (14 1),

* Meaning t, (II;*"*1) and not (¢, I1,) 7+,
3 B2
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Hence, if 1T has circum-radius (R, = /\/ 3 <1 —+ l),
x

then II** has circum-radius /\/ 1 <1 + 1 >,

x — U
which is imaginary if r<u<w41.
So IIt*is impossible if r < u,*
pe., if 1+ ; < 2 (,R,)

It is degenerate in the case of equality, because its circum-radius is then infinite.

7.3. The main object of this paper is to examine all polytopes of the form
[, T,

the constituents being regular. With these are intimately associated the polytopes of
the form

7.31 [, MY, mP 7+,

But [IIG), I, I ]2 and [IIG), T, T, TI{)]*1 never oceur ; because [ag, oy, a;]t?
and [y, ®g, ¢, ;] have circum-radii 4/3 and 4/ respectively, while a fortiori more
complicated would-be vertex figures have circum-radii exceeding unity.

It is easily verified that the only possible polytopes of the form

[y, me,
with the existence-condition (by 2.84 and 4.29)

(()R;ril))2 + (oRﬁ: 2 =1,

* For, if u>z 41,
let y=[u— x].
Then u—z>y>u—z—1,
.e., rCu—y <z+ 1L

Hence [T;**~Y is degenerate or impossible.

But y > 1.

Therefore [T+* is still impossible.
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are the simple truncations of the regular polytopes, namely :—

[Otp, aq]-l-l = tp %pt+g+1 = tq %ptg+1s

[O(‘p’ Bq]-l-l = tp ﬁp+q+l = tq Yp+q+l’

[ﬁp) Bq]+1 = tp 8p+q+l = tq 8p+q+1’ 1 9 .
2Nt — 42 — { ~toz1 21>,

[Oﬁp, aq’\/ ] qu+l qYﬂ+2 (p + 1 + q + 1

[Olp, (d11)+u]+1 = tp (Otl‘r).’-p-"'ﬁ-l = tu+l (“p+u+l1.)+1 (p _l— U = 2*)7

[“1: %y '\/3]+1 =1t (0‘1 ‘\/3)+2 =1 (“2 ’\/3)+1-
All these, except [B,, B,]*!, are particular cases of
[ocp, Hq] +1 — tpn;—p+1’
which is the same as 7.21. ‘
By 5.6, the only truncations with circum-radii =< 1 are:

1,

[x,, ]t  with TFi=®

1
T

[0(1, Bq]+]’
(21, @q]+2 = (t13q+2)+1 = k8q+3

is degenerate, and so cannot be a vertex figure.

and

Now

We are thus naturally led to consider all possible polytopes of the special form

[a)]’ aq] +u’

or more conveniently

[“,;; ”_q] +ntl

for which, by 7.22, the existence-condition is

= () O )

1 1 1
. =1
782 ES e RS

(equality indicating degeneracy).

2.e.,

* The circum-radius of «,7 being it = %(1 + 2._1’.) ,
that of (&, 7)*% must be \/1<1+ 1 )
' 2\ 27 — U/
So («,7) ™ is impossible if w> 27
. / 1
+ul+1 f —— 1 1’
and [y, (0a7)™1%, i %(1 p+1>+2<1+2¢—u>>

i.€., if P4 u>21—1 (=4/5).

371
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The symmetrical character of this condition suggests the new notation
7.33 N,y = [0, 2, ] 7",
the p and ¢ being of course interchangeable, so that

7.34 Ny = Nygye

Putting [«,, «,] for II, in 7.21, we obtain the identity

7.35 by = [0, oy o ],
from which 1t follows that
7.36 Ly = 0Py = iy

Three polytopes, g Pgm> @up» Which are related in this manner, are said to be ““ semi-

reciprocals ”’ of one another. -
7.4. The following are the special cases of 7.33 so far discussed :

7.41 (— l)m = [ocp, qu],
7.42 0y = 1%y 1q415 Pp = %ptq+1s Qop = %ptg+1>
7'43 %n == Bn+3: lln = hYﬂ+37 lnl = hYn+3'

To these might (by analogy) be added
(_ 2)pq = (OCP__I—W“ o"q——l)'

The only remaining possibilities, according to 7.32, are :—

7.45
221 1 22
321 231 132
421 241 142
521 / 251 152
331 1 33
222

The existence of these fourteen polytopes remains to be established (in chapter 9).
But let us first investigate their properties on the assumption that they do exist. Note
that the last six of them satisfy the degeneracy-condition

1 1 1
7.46 ]
RS R R
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7.5. By 7.11, the uth vertex figure of

. /"/27‘1

is
(1 — 1),

The elements of n,, fall into two categories : those of = n dimensions, which are all
«’s (simplexes) by 7.12 ; and those of > # dimensions, which, by 7.13, are all of the form
Ny
where »
0=p =p and 0=¢ =g¢

In spite of 7.34, it is useful to fix the order of the suffixes, so as to distinguish between
equal elements which are of different type. Thus, if p > ¢ =r> s = 0, we say n,
has elements n,, of two different types,

n,, and n,.

If s > 0, an element of type n,,_,, belongs to an element of type n,,, but cannot belong
to one of type n,,, since r > s.

We can prove by induction, proceeding as in 3.2, that all elements of the same type
are equivalent, this being obvious when n = — 1. Kqual elements of different type
are not equivalent, unless p = ¢ ; and even then it is worth while to preserve the dis-
tinction, such elements being (like the faces 0;, and 0y, of the octahedron 0;) uniquely
divisible into two congruent sets.

7.6. Let

[ pq]

denote the number of vertices of [«,, a,, «,]*'. (Its value is thus independent of the
order in which #, p, ¢ occur.) By 7.5, it is also the number of «,’s in n,,, so that (by
7.41)

7.61 (=Dpg=1

By 7.42 and 7.43 respectively,

7.62 [0 p q] = ("341%)

and

7.63 [#11] = 2"+ ("§®%) = 2"(n +2)(n + 3),
Also, by 7.46, T - '
7.64 [521]=[331]=[222] = .

Thus the only cases which still await calculation are
7.65 [221], [321], [421]

(These numbers will be found, by means of indeterminate equations, in the next chapter,
8.7.)
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1.1. Applying 2.63 (with » for s) to n,,, for which
7.71 m=n-+p-+q-+1,

we have
() [(n —w)pg] = ("3 [npql.

So the number of «,_,’s of the first category (7.5) is

u—1 — (n+1 [%pq] - g = g
( Im) ( % —————[(n_u)pq:[ (O =uUu=s"n —J[— 1).

More symmetrically, the number of «,_, _,’s is

7.79 (n—n’—l!m) — (n+1 [j’l]—lg_] (—1 =< n = n).

n' +1 [n/ -

Again, putting n + p’ 4+ ¢’ + 1 for s and » + 1 for » in 2.63,
[(npql. (351) (5 = [mp'g T (774 ).

So the number of elements of type

) Ny
18
7.3 n+p’+¢ +1 ) = 1Yy (¢+1 [7?/ 7’ ’l] 0 / 0 / .
( ! ) P+1) ¢ +1 [np/(]/] ( = = s =q = )
Putting n" = n — 1 in 7.72, the number of vertices of n,, is
7.74 Cl) = (0 +1) L2

[(n —1)pq]

Again, putting p" = p — 1, ¢’ = ¢, and then p’ = p, ¢’ = ¢ — 1, in 7.73, the number of
bounding figures

7.75 Np-1g DA Npeg
18
7.76 ") =@+1) W[;)@___%q%_ﬂ +@+ l)m][fjb(q’*llq-ll—)]"

7.74 and 7.76 reveal the interesting fact that the numbers of vertices and of bounding
figures of the two types, take the same values (in different order) for three semi-reciprocal
polytopes. This fact naturally suggests, as a theorem worthy of consideration, that
the centres of the bounding figures of n,, are the vertices of polytopes similar to p,,
and ¢,,. Another way of saying this, is that the reciprocal of n,, has the vertices of
Pen X and ¢,, X ; hence the name “ semi-reciprocal.” This fails when pg = 0, because
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Moy ( = ¢44,+1) has only one type of bounding figure. But the theorem can hold
even in this case, if we make the convention

7.7 | Mi—1yg =

(which agrees with 7.36, 7.42, 7.61, 7.72 and 7.74, though violating 7.71), and
re-enunciate it in the following form.

1.8. The centres of the n,_.y,’s of n,, are the vertices of p,, X.

Let this theorem (which we shall prove) be denoted by

(n, P, )
In the first place, the particular cases

0, p,9), (n,0,q), (n p,0)

are obvious, since they state respectively, that

7.81 the centres of the ¢,_; «,,,’s of t,0,,,.1 are the vertices of ;.41 X,
7.82 the centres of the a,s of «,4,41 are the vertices of ¢, ;4041 X,
7.83 the centres of the tpipS Of o, .4 are the vertices of a1 X.

(7.81 is true by 5.22, 7.82 by the definition of truncation, and 7.83 by reciprocation.)
From now on, therefore, we shall suppose

n > 0, p>0, qg> 0.

By the principle of induction, it will be sufficient to deduce (», p, q) from the theorems

’ ’

™, 9 q)
inwhich 0=n"=n O=<p =p, O0=qg =gq but » +p +¢ <n+t+p-+yq.
For the purposes of the proof, we actually hypothesize
r—=1p9, mp—1g, (Lpg—1), (®—1pg—1),
Ln—2,p,9) (ifn>1) and (m, p,q — 2) (ifg > 1).

7.84

Two bounding figures (of given types) of #,, are said to be “adjacent ” if their
contact is the closest possible.

Nep—1yq 30 7, ,_qy (tWwo bounding figures of different type) are adjacent if, and only
if, they have a common 7,y q_1). For, n(,_q)q-1) Occurs-as a bounding figure both
of n,_1), and of m,,_1); while n,_,, the other type of bounding figure of n,_,),
‘cannot belong to %, 1), NOr M,z t0 M-y, Further, since all elements of type

VOL, CCXXIX,—A 3¢
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Nep—1) q—1) aTe equivalent, every n_iq—1) of n,, belongs just to one n,_;, and to one
My (g—1)-

We shall now prove that the common element of two adjacent n,_,,’s (bounding
figures of the same type) is #,_s), This is obvious when p > 1; since n,_s, is a
bounding figure of #,_;),, whereas #,_i, -1 cannot belong to fwo n,_;,’s. When
p = 1, what we have to prove is that the common element of two adjacent «,;,.,’s of
Ny, 18 @,. Now, the (» 4 1)th vertex figure of n,,is [a;, «,], which has two bounding
«,’s. But the (n -+ 1)th vertex figure always indicates the incidences at an n-dimensional
element. Hence just fwo bounding «,,,.,’s of n,, meet at every o, (These two
2,101 must be adjacent, since the two a,’s of [«;, «,] are trivially adjacent.) Thus
the common element of two adjacent n,_y,’s of n,,is n,_s,, evenif p = 1. Similarly,
the common element of two adjacent #,,_1)’s i8 %, ,-s. Let II denote the polytope
whose vertices are the centres of all the n,_,),’s of n,. It has the same number of
vertices as p,, : we have to prove that it 4s p,, X.

Let us investigate those vertices of II which are the centres of certain special sets of
Nep—1yyS of m,. To take the simplest possible set, it is clear that the centres of two
adjacent ng,_,,,’s are two consecutive vertices of II (i.e., two vertices joined by an edge).

Those %(,-1), s Which are adjacent to a given n,,_,) meet the latter inits ng_;,-1’s.
Hence the centres of these n,_;),’s are the vertices of a polytope similar to that whose
vertices are the centres of the n,_y),—1)’s of n,,-1. By (», p, ¢ — 1), this polytope

18
7.85 Pa-1yn X.

Again, the centres of those n,_y,’s which meet at a given vertex of n,, are the vertices
of a polytope similar to that whose vertices are the centres of the bounding (n — 1),_,),s
of the vertex figure (n — 1),,. By (n — 1, p, ¢), this polytope is

7.86 Doty X -

From the manner in which they were determined, the py_1)» X and p,u-1) X,
whose vertices are the centres of these two special sets of n,_y),’s of n,,, are bounding
figures of II.  In order to show that such figures completely bound II, we must examine
the bounding py_s, X’s and py_1)m-1) X’s of 7.85 and the bounding p,—1) -1y X’s and
Dam—nX'sof 7.86. If ¢ =1 orn = 1, bounding py—s,X’s O Py,-2X’s (respectively)
do not occur.

The centres of those n(,_1),’s of n,, which are adjacent to a given n,,_,, and also occur
at a given vertex of this m,,_,, are the vertices of a polytope similar to that whose
vertices are the centres of the bounding (n — 1),—y-ns of (n— 1), By
(n — 1, p, ¢ — 1), this polytope is py_1)@w-1yX. From the manner of its construction,

[np (g —1)] times as a bounding figure of 7.85

such a polytope occurs (n 4 1) =10 p@ 1]
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[ —DPg__ times as a
(n—1)p(g—1)]
bounding figure of 7.86 (viz., once for every m,, . at a vertex of n,). Thus every
Pa-1) -1y X Which belongs to & py_1yn X O Pym-1yX of II belongs also to a p,eu-1)X
OT Py-1ya X respectively.

If ¢ > 1, those n,_,,’s of n,, which are adjacent to both of two given adjacent
N,-n'S, meet the common m,, , of these n,,_,’s in its 7, ,),—n's. Hence the
centres of these n,_,),’s are the vertices of a polytope similar to that whose vertices
are the centres of the m,_,),—y’s of %, By (n, p, ¢ — 2), this polytope is Py_s)nX.

(viz., once for every vertex of m,,_;), and (g + 1)[

From the manner of its construction, such a polytope occurs g sz 8:;3} times

as a bounding figure of 7.85 (viz., once for every #,, s of 1y, ). Thus every py_sn X
which belongs to a p,_y,, X of II belongs also to another py_1y,X.

Again, if n > 1, the centres of those n,_,,,’s of n,, which occur at a given edge, are
the vertices of a polytope similar to that whose vertices are the centres of the bounding
(n — 2),—y,’s of the second vertex figure (n — 2),,. By (n — 2, p, q), this polytope
i8S Pym-nX. From the manner of its construction, such a polytope occurs
n [(n—1)pg] times as a bounding figure of 7.86 (viz., once for every edge at a

[(n—2) pq]
vertex of m,). Thus every P,u-» X which belongs t0 & p,u-1, X of II belongs also

to another p, (-1 X.

We have now proved that II is completely bounded by the aforesaid pq_sy, X’s
and P,,-1) X’s.  Also, the vertices of II are, like the n_,,’s of n,, equivalent.
Hence (by 1.7) II is uniform. In order to identify it with p,, X, we have only to prove
that its vertex figure is

(P - l)qm

In order to do this, consider those #,,,’s of ,, which are adjacent to a given
Ny These n,_, ’s meet the given m,_,, in its n,_,,’s. Hence their centres
are the vertices of a polytope similar to that whose vertices are the centres of the
Npsyg S OFf Ny By (m, p — 1, @), this polytope is (p — 1); X .

Thus the vertex figure of II is (p — 1), X. But this vertex figure must be bounded
by (p — Dgnya's and (p—1)y@m-1y’s, these being the vertex figures of p,_1), X and
Pym—1y X Tespectively. Hence the vertex figure of I is precisely (p — 1), and so
II = pp X .

Since (0, p, 9), (1, 0, q) and (n, p, 0) are all true, while (n, p, ¢) can be deduced from
7.84, it follows by induction that (n, p, ¢) is true for all relevant values of n, p, ¢ (v.e.,
whenever n,, exists).

This “ semi-reciprocation theorem,” as it may be called, is only a particular case of a
more general theorem, to the effect that the centres of the n,,’s of n,, are the vertices of

by—pr—1 Pgn X
3¢ 2
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7.9. Let g, be the order of the group of symmetries of n,, so that g,,_;,; is the order
of the group of symmetries of (n — 1),,. We shall prove that, if p ¢ > 0,*

7.91 9 =1 F¢e,)+1)! (p+1)! (¢g+1)! [npg]
This is true when » = — 1, since it becomes 4.72. Also, it can be deduced from
In-11=1+e )n! (p+1! (g+1)! [(n—1)pq]

by means of 2.41 and 7.74.
Hence it is true, by induction.
For the purposes of group-theory, the violation of 7.71 is a fatal defect of the convention

7.77, which must apply only when ¢ = 0. When » and ¢ are both positive, it is con-

venient to assume
7.92 Mg = {3, ...3,2,3, ... 3)

with n — 1 threes at the beginning and ¢ — 1 threes at the end. “Improper” regular
polytopes like this, whose ScHLAFLI symbols contain the number 2, are found to have
zero content, and are therefore most conveniently regarded as partitions of (the boundary
of) a sphere-analogue. When so regarded, they become perfectly analogous to the
central projection of a proper finite regular polytope on a concentric sphere-analogue.
The simplest example is the “ digon ”

L_y1,

which can be regarded as the partition of (the circumference of) a circle into two semi-

circles.
According to the new convention 7.92, the elements of n_;,, consist of

1 Cla) = G «s, for s=n—1,
an
(n+q’lm) = (g'—l:l—ll) n(——l)q’,sy for 0 = q’ =4q.

The chief disadvantage of this convention is that it makes (*|,) = ¢ -+ 1, in disagree-
ment with [n (—1) ¢] =1 (7.61). (This happens because the n-dimensional elements

now belong to the second category ; instead of the first, as in 7.5.)
Note that n_), and ¢._,,, are reciprocal.

8. The Pure Archimedean Series.

8.1. We shall now investigate certain special cases of the polytope n,,, with a view
to evaluating the numbers 7.65.
* As in 4.72, the ey, has to be omitted if p and q both vanish. In order to cover this exceptional case,

7.91 may be written in the form

gm = (L+epg— gpoggo) (n+ 1! (p+ 1! (¢g+ 1! [npg]
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The T,,_3’s (19 = ®,41) Of My are all equivalent (7.5). So also are the I, _,’s
(o = ttnp1) Of Mgy, and the II,_g’s (g9 = tpye = Ngy) Of Mgy, Further, the I1,,_,’s
(Mo = %pyo = Ngy) Of 7y, and likewise the II,,_s’s (9 = otyy 2= Ngy) Of myy, are equal
but not equivalent.  Also the II,,_;’s (15, = M,5) of ne, are equal (in fact, equivalent),
though the II,_,’s are not (being actually mgy = a,. 5 = nge and ny; = B,s). For
these reasons, in accordance with 1.9, we call the polytopes

Ny, (for — 2 =< n = 5) the “ pure Archimedean series,”
ng; (for — 2 =< n =< 3) the ““ sub-Archimedean series,”

nys (for — 2 = n = 2) the “isohedral Archimedean series ” ;-

and adopt the alternative notation

8.11 (PA)pya = Mgy,

8.12 (SA),15 = gy,

8.13 (IA)n+5 = nzz.
Thus, eg.,

814  (PA) = (m—7r—0), (PA)y = [my, @], (PA)y = s, (PA)y = hyy;
8.15 (SA)a = (‘127“0), (SA)4 = [“3, 0‘1], (SA)s = bu, (SA)o = hYe.?
8.16 (TA); = (ey—77— 1), (TA)y = [ag, %3], (IA)s = tyxs.

8.2. In each of these series (as in the series of «’s and of B’s) every polytope (except
the last of all) is the vertex figure of the next. (PA),, the vertex figure of [a3, ,], is
an isosceles triangle of sides

1, v/2, v2.

(SA); and (IA); both have some claim to the title ““ isosceles tetrahedron,” the former
being a triangular right pyramid, and the latter (in the language of crystallography) a
“ rhombic bisphenoid.”

The highest members of the series, namely

(PA)s = ba1, (SA)s = 331, (IA)7 = 249,

are degenerate (by 7.46).

(SA), is semi-reciprocal to (PA),, and (IA); to (PA)s. It is therefore desirable to
make a special study of the pure Archimedean series.

8.3. By 7.75, (PA),, is bounded by «,,_1’s (g = ttnys by 7.42) and B,,—y’s (13 = Buys
by 7.43). It is convenient to let P,, denote the number of «,_,’s, so that, by 7.76

(with m — 4 for n),
P, =2[(m — 4)21]/(%) (m > 2)
and

8.31 r21] =+ (n+2)(n + 3) (n + 4) P,
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Further, since (PA), is-bounded by one «;, and two B,’s, P, = 1.
Putting m — 1 for sin 2.63, (*7|,) (" uluw) = “HuZ1) (")
Applying this to (PA),,, whose uth vertex figure is (PA),,_,, and letting the ““ ¢ ” refer
to the bounding a,,_,’s of (PA), (and to the corresponding «,_,_,’s of (PA),_,), we
have
(u~1lm) Pm—u = (;’An) Pm (u =m - 2.)'

Thus the number of elements «,_; (for v < m — 2) is

8.32 (“7m) = () Pr/Pru.
In particular, the number of vertices (for m > 2) is
8.33 () = mP,/P,_;.

8.4. The (m — 2)-dimensional elements of (PA), (= ng), though all of them «,,_,’s,
are of two types: those of type “aB ” (= my,) each belong to one bounding o,,_,
(= ngo) and to one bounding B,,_; (= ny,), while those of type “ BB (= ny) each
belong to two bounding £,,;’s. This is obviously true when m = 2 (s.e., for the isosceles
triangle whose sides.are «,, 8;, B,) and follows for greater m since (PA), is the (m — 2)th
vertex figure of (PA),,.

If ("~2|;%) and (™~?|;¢) are the numbers of «,,_,’s of these two types, while ("*|;,) and
(™'|%) are the numbers of bounding «’s and p’s, we have the following relations :

8.41 - m (") = (")
(since a,,_; is bounded by m «,,_,’s) and
8.42 2m ) = (R 20

(since B, _, 1s bounded by 2" ' «,_,s).

Putting s = u = m — 21in 2.63, ("°|) Clz, mez) = (" *|m-2) ("%|m)-
This can be applied to (PA),, the “ ¢ 7 standing for either of the type-symbols «8, Bg.
It follows that the obvious relation

(olz,:r‘zp—z) = 2 (0 2, fnﬁ—z

implies

8.43 ("=2f) = 2 ("2[2).
From

8.44 (s = P

(the definition of P,), we can now deduce successively :

8.45 (") = mP,, (by 8.41),
8.46 ("=2|%%) = mP,,/2 (by 8.43),

8.47 ("18) = mP,, /2" (by 8.42).
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8.5. Summarising these properties of (PA),—

7w (o =m—2) ("2 + (") " Ym)
Bm—1

Oy—1 ' % —2 Hp—1

Substituting in 1.38, we have

Pm{m2—2(~1)m-“—@-—~m— UL -|-—m-}—1 — 0,

u=0 Pm—u 2 om—2
1.e.,
m 3m T (™) 1
8.51 —_— 1 —— Z (=1 —— = 0.
2"”—2 + 2 +~r — s ( ) A Pm O

This equation could alternatively have been obtained from either of the semi-reciprbcals
of (PA),,, the elements of

2(m—4)1
being—
(lm) l (*|m) 1 Clm) Clm) } (ln) (r=4)
mP,,/2"* l mP,,/2 B Pu/2 | ()P | (3) Pu+ () Pu/Py
| &g *3 22 ‘ 20-91
and those of
1(m-—4)2

(lw) | (], () ) | () (r=4)

P, [(3)P,/2) 2(¥)P.

> Og

5(2) Pu/2+ (7) P | (r+2) (1) Pu/2-H(r+1) (22) Pa/2 " (7) Po/P,

lip =105

loy=a3] . o, kYr | P

8.6. In accordance with the principle of 1.51, we can suppose 8.51 to be true even
when m = 9, if we put ‘ A »
8.61 ' Py= .

The particular cases of 8.51, along with the fact that we are dealing with positive
integers, just suffice to determine the rest of the P’s. By 8.47, $P,, 35P,, $Ps are
integers ; so, if we put :

8.62 Pc = Sw, P7 =‘32y, PB = 82,
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then z, ¥, z must be integers.

m = 2 in 8.51 gives
24+1—-3+(1—1)P;=0 (identity).
m = 3 and m = 4 give

$+1—5+3/P,—2/P;=0,

both of which reduce to

3/P, — 2/P, =2,
whence
8.63 P, =1
and '
8.64 P, = 2.

m = 5 and m = 6 give
%+1—l§§+10— 5 + 5/P4 —‘2/]-)5:0,
341— 9 +15— 10 + 15/P, — 6/P; =0,

both of which reduce to
5/P4 - 2/P5 =%,
whence
8.65 P, =5
and
8.66 P, = 16.

(For, since P, would be fractional if Py = 1, we must have P; = 2, so that

1+E=5/P >4
%5P4<17Q’
P, =3,40r5,

and correspondingly
P, =48 18 or 16,
m = 7 and m = 8 give
11— 42— 4+ 7 -4+ 7P —2/P,=0,
L 4+1—12+28— 28+ 14— 1 4 28/P;—8/P, =0,
both of which reduce to '
7Py — 2/P; = 45
or v

14
=1

8.67 _
(in the notation of 8.62).

1
z Y
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95 +1— % 436 —d2 1 126 — 83 4 84/P, — 36/P, + 9/P,—2/P, =0,

which, in virtue of 8.61, reduces to

or

But, by 8.67,

Hence, by subtraction,
8.68

8.7. We have now to solve the indeterminate equations 8.67 and 8.68.

28/P6 - 12/P7 + 3/P8 = ‘1‘7’9(_)216

28 3 3

?‘—?—/—f—;:%%‘
28_2_ 3
r Y
1_3_ a3
y 2 24

since  would be fractional if y =1,

and correspondingly

so that, by 8.68,

But z must be an integer.

14
bHi=>y,

75 X <*2'38'9

x="1, 8 or 9, )
y=2, 4 or 18,
z =129 120 or 2160.

Hence the unique solution :

8.71 r =09, y =18, 2z = 2160.
It follows (by 8.62) that

8.72 P, = 172,

8.73 P, = 576,

8.74 P, = 17280 ;

and, by 8.31 (thus solving the problem proposed in 7.65),

[2 2 1] = 720,
[321] = 10080,
[4 2 1] = 483840.

8.8. By 7.91, the order of the group of symmetries of (PA), is

8.81

In

=12(m—3)! [(m—4)21] =m! P,
3D

By 8.67,
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which takes the following values :—

m 2 3 4 5 6 7 8 9

In 2 12 120 1920 51840 | 2903040 | 696729600 w
=8X9! | =192x10!

8.9, Let

S, =2[(m—5)31]/(*) and I,=3[(m — 5)2 2]/(%{‘).

Then the numerical properties of (SA),, can be expressed in the form—

(“7fw) (w=m—3) | ("7%) +("7°%F) (") (")
(%) 8n/Sn-u (3)8, + (2)S./3 | mS, +(¥)8,/2" Sn + MSp/Pry
oy Oy —3 Xm—sg Bm—s Opy | (PA)moy

(the type-symbols referring to the «,_,’s and B,,_,’s which meet at an «,,_;), and those
of (IA),—

(“7w) (w=m —2) ("2lm) (" |m)
(%) L/ T ml,/2 4+ (%) L,/2"~? ML,/ Pr_y
Oly—1 Em—g Bz (PA)m—l

Analogously to 8.81, the values of g,, for (SA),, and (IA),, are respectively
m! S, and m! L,

Here are the actual values of S,, and I,,, with those of P,, for comparison :

mo |2 3 4 5 6 7 8 9
P, 1 2 16 72 576 | 17280 | oo
Sn 1 6 32 576 o

L, 4 12 144 ®

The explicit expression of
Pm> Sm: Im’

in terms of m, involves the “ ScHLAFLI functions,” on which a paper should appear
shortly. ‘
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Actually, in the notation of § VII of ScurArLr’s ““ Réduction ...” (loc. cit. in Preface),
2m/(m| Pm) ::fm (Hs, %TE, %ﬂ’ %TE, ) + 2fm (%n_%ﬂ& i’TC, %‘TC, %TE, “‘)
= Fu (1s) + 2G, (Fr—3us),
2m/ (m| Sm) =fm (97) -%TC, %Tl:, %}'T:a “') +fm (%—TE—(L-;, Us, %‘TE, %TE, "')
+2fm (%‘Tc’ %‘J‘E—%(Ls, %’B %n, ):
2m/ (m ! Im) :fm (2p4, ©s %Tc, "%‘Tc, ) T+ me (%"—'9‘4, %TC‘—%EJ‘B: %TB %T"-’ cs)s

where p, = 1 sec™ p.

9. Eight-dimensional Co-ordinates,

9.1. Consider the infinite set of points in eight dimensions whose Cartesian co-ordinates
are either all even or all odd and add up to a multiple of 4. These points are the vertices
of a degenerate nine-dimensional polytope which we seek to identify with

(PA), 2 4/2.

That the points are equivalent (in the sense of 1.6) may be seen by applying certain
symmetries (in this case translations) which we call

R and Uj*  (4,5=1,2,3,4,56,7,8; 7 #).

R increases every co-ordinate by 1.
U,; increases x, and «; (the ¢th and jth co-ordinates) each by 2, leaving the remaining
six co-ordinates unchanged. (Thus

R? = U12 U34 Uss U7s-)

Products of these symmetries clearly suffice to change any point of the set into any
other.

9.2. The points nearest to (¢.e., distant 2 4/2 from) any particular point of the set,
are 240 in number. For, those nearest to the origin (0, 0, 0, 0, 0, 0, 0, 0) are

+ (27 2) 07 07 O) O) 0) 0)7
an

(a,1,1,1,1,1,1,1) with 0,2, 4, 6 or 8 minuses.

9.21

We shall eventually identify these 240 points with the vertices of
(PA)s 2 /2.
They possess symmetries which we call
S, T; and (%) (t,7=1,2,8,4,5,6,7,8; ¢#)).

* Here, and generally, whenever two or more suffix numbers occur without commas between, they are
supposed to be permutable, e.g., U;; = Uj,.

3D2
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S diminishes every co-ordinate by the quarter sum of the co-ordinates.

T',; changes the sign of z, and of ;, leaving the remaining six co-ordinates unchanged.

(%) is the  transposition ” which interchanges the co-ordinates x, and z;, leaving the
rest unchanged.

Thus 8 is the reflection in the 7-space

X+ @y + Xy + 2y 25 + 2 + 2 + 2 =0,
T; is the rotation (through angle =) about the 6-space
and (%) is the reflection in the 7-space

T, =,

The points 9.21 are equivalent. For, T, gives all the necessary changes of sign,
(¢j) gives all the required permutations, and finally

(2> 2; O: O) 0’ O: O’ 0) T12 ST12 = (1: 17 1,1, 1) 1) ]-: 1)-
Actually, (1) is expressible in terms of S and T,. For
9.22 () = (ST;)* or (T,;S).

The following are the simplest properties of S and T} :

S2 =1,
(Ssz)G = 1)
9.23 T,T, = T,T,.
The convention
Tw=1
makes 9.23 include
Tij = Tji = Tki Tkj’ Ti] Tu = Tkz T1j7 Tij2 =1,

all of which are trivial.
S and T, being symmetries also of the original infinite set of points, are related to
R and U; by the equations

(RSF = 1 = (T, Uy,
R =8U;'8U; = ST, SU,ST;S = T;SU;'ST,,
U,; =T; R T;R =T, ST, RT,; ST, = ST, R T,; 8.
Note that these relations remain true if
R, 5, T, U
U, T, S, R

j)

are replaced respectively by
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It will be found convenient to let

Tz’jkl = Tij Tkl
and
T = Ty944 Tsers (2.€., reflection in the origin),

so that (ST;u)* = 1 = (ST)®.. Note that
1,1,1,1,1,1,1,1)ST = (1,1,1,1,1, 1, 1, 1).
9.3. Of the 240 points 9.21, those nearest to (i.e., distant 2 1/2 from) any one, are 56
in number. For, those nearest to (1,1, 1, 1, 1, 1, 1, 1) are
9.31 (2,2,0,0,0,0,0,0) and (—1,—1,1,1,1,1,1,1).

For simplicity, let
( C12 = (2’ 2; 07 0> 0’ O’ 0> 0)>

9.32

[ =(—1, =13 1,1,1,1,1, 1).

Then the 56 points 9.31 are simply

9.33 C; and ¢y,

K

where ¢ and j can be any unequal pair of the numbers 1, 2, 3, 4, 5, 6, 7, 8.
These points, lying in the 7-space

Xy + Ty + Xy + Ty + T+ X + X7 X5 =4,
are to be identified with the vertices of
(PA), 24/2.

They are equivalent, since the transformation 2R puts them into the symmetrical

form
(3, 3, —1, —1, —1, —1, —1, ——1), (——3, —3,1,1,1,1, 1, 1).

Besides the obvious symmetries—(4j), which interchanges the suffix-numbers 4 and j
wherever they occur ; and ST, which interchanges C and ¢, leaving the suffixes unchanged
—the points 9.31 or 9.33 possess also the symmetry T, ST, (¢, j, k, I being all
different). This is the reflection in

v, 4, +x, + v, =0, +x; + x, + @,
where e, f, g, h are the rest of the numbers 1, 2, 3, 4, 5, 6, 7, 8. Thus
Tijlcl STW = Tefyh ST&‘M@’

Introducing a new notation, let

9.34 lefgh . ykl] = Tijkl STijkl'
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Naturally
lefgh . ykl] = [4kl . efgh],

and the order of the numbers on one side of the dot is quite arbitrary. This new
symmetry interchanges C,, ¢,,; Cy, ¢,; and so on; but leaves, eg., C, and ¢, un-
changed. It is called a “ bifid reflection,” by analogy with CayLey’s “ bifid sub-

stitution.”’*
Note that

9.35 (1) = [efge . ghkl] [efqy . vhEL) [efgi . jhET)
and

9.36 ST = [3567 . 1248] [1467 . 2358] [1257 . 3468] [1236 . 4578] [2347 . 1568]
[1345 . 2678] [2456 . 1378]."

(The order of these seven factors is quite immaterial. The essential thing is that every
pair have just two common numbers on each side of the dot.)

It is convenient to omit the numbers 7 and 8 (in a bifid reflection) when they occur
respectively before and after the dot. Thus we write

9.37 [fgh . yk] = [ fghT . yjk8].
Of course - .
[fgh . k] = [4k . fgh).

9.4. Of the 56 points 9.33, those nearest to (¢.e., distant 24/2 from) any one, are 27
in number. For, those nearest to C,q are

9.41 (2,0,0,0,0,0; 2,0) and (—1, 1,1,1,1,1,; 1,1).
Changing the notation by putting
9.42 0,=C, and b, =C, (1=1,2,3,4,5,6),

these 27 points are simply
9.43 @, b and ¢,

where ¢ and j can be any unequal pair of the numbers 1, 2, 3, 4, 5, 6.
These points, lying in the 6-space

Ty + By + Ty + By + X5+ T = 2 = 3; + X,
will shortly be identified with the vertices of
(PA)s 2+/2.

* Sarmon’s “ Higher Plane Curves,” § 261.
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That they are equivalent, may be seen by considering the 20 symmetries [foh . 4jk],
where f, g, h, 1, §, k are all the numbers 1, 2, 3, 4, 5, 6, arranged in any order. Expressed
in terms of transpositions of the symbols,

9.44 [foh . yk] = (a'f cgh) (a’y cflz) (a, cfg) (b cjk) (bj Cir) (by cij)’

Of the 27 points 9.43, those nearest to (¢.e., distant 24/2 from) any one, are 16 in
number. For, those nearest to a; are

9.45 b, ¢; and a;, (5,7=1,2,3,4,5;1#)).

i
Applying the congruent transformation TeSUgTR*, these 16 points become respectively
(0,0,0,0,0; 0,0,0), (2,20,0,0;0,0,0) and (0,2,22,2; 0,0, 0).

By 6.22, they are the vertices of
hys 24/2.

k’Y&s = (PA)s’

9.5. Since (by 8.14)

and since (by 8.2) (PA),, is always the vertex figure of (PA), ., (when the latter exists),
the rule 6.1 enables us successively to identify the sets of points

9.43, 9.33, 9.21 and 9.1,
with the vertices of

(PA)s 24/2, (PA), 24/2, (PA),24/2 and (PA), 24/2,

respectively. Conditions (i) and (ii) (of 6.1) are clearly satisfied in each case. Condition
(iii) is automatically satisfied for such bounding figures as are «’s, since then no “ other
points of the original set ” are required. So we have only to consider the § bounding
figures.

Now, if we are given one vertex of 8,, and the vertices of the actual vertex figure at
this vertex, there remains only one more vertex of 8,, this vertex being the image of
the first vertex in the centre. Also the centre of 8,, is the centre of the vertex figure.
Thus if, in (iii), the * typical bounding figure ”’ of the “ (m — 1)-dimensional polytope ”’
is a B,,_» X whose centre is O, then we have only to show that the image of A in O belongs
to the given set of points. '

Taking bg, C12, C135 Cass Cuas Cass Caas Us
as the vertices of a typical bounding 8,24/2 of the hy; 24/2 9.45, O is
0,0,0,0; 1, 1,1, 1),

* Products of operations are, in this paper, to be worked from left to right. Thus, in the present case, we
apply Tg, first and R last. k
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and the successive A’s and images are as follows :—

Polytope to be
identified (PA)s 24/2 l (PA), 2+/2 (PA),2 /2 ’ (PA), 24/2
'A' aﬁ C78 (]‘5 ]‘7 ]'J 17 ]‘7 1, ]'7 ]') (O’ 07 O, OJ 0, 07 05 0)
Image of A in O b, Oy (—1, —1, —1,—1; 1,1,1,1) | (0,0,0, 0; 2,2,2,2)

Thus the identification is complete.
Incidentally, we observe that the numbers

16, 27, 56, 240, o,

agree with the formula 8.33.
We have now established the existence of

(PA),, (for m =9),

z.e., of
Ngy (for n = 5).

The existence of

2. and 1,
follows by semi-reciprocation (7.8). Of the fourteen polytopes 7.45, we have thus
established all save three, namely

(SA)s = 3a1,
135 (its semi-reciprocal)
and
(TA); = 2,,.

9.6. Consider now the totality of points whose eight co-ordinates, all even or all odd,
add up to zero. These points, whose equivalence can be established by means of the

symmetries
Tijkl RTijkl:

are the vertices of a degenerate eight-dimensional polytope which can be regarded as
the section of (PA), 24/2 by the 7-space

9.61 Ty + Ly + T + Xy + X + T + 2 + 25 =0.

This polytope will be found to be
(SA)s 24/2.

The 126 points distant 24/2 from

9.62 (0, 0, 0, 0, 0, 0, 0, 0)
are .
9.63 2,0,0,0,0,0,0, —2) and (1,1,1,1, —1, —1, —1, —1).
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These points are equivalent by means of the bifid reflections T'ST .
They will be identified with the vertices of

(SA), 24/2.
Of these, the 32 points distant 24/2 from

9.64 (2;0,0,0,0,0,0; —2)
are
(05 2,0,0,0,0,0; —2), (1;1,1,1,—1,—1,—1; —1), (2; 0,0,0,0,0,—2; 0).

By means of the transformation T;4SR, these points become recognisable as the vertices
9.65 (0;2,0,0,0,0,0; 2), (0;222,0,0,0;2), (0;2,2,2,2,2,0; 2)

of hye2+/2 (6.23).
Now, by 8.15,
hys = (SA)e p

and (by 8.9) (SA),, is bounded by «,_;’s and (PA),,_,’s. For the purposes of 6.1, we
need only consider the (PA),_,’s. A typical bounding (PA);24/2 or hy;2+/2 of
the hyg24/2 9.65, has the vertices

(0; 2,0,0,0,0; 0;2), (0; 2,2,2,0,0; 0; 2), (0; 2,2,2,2,2;0; 2),
which, by the reverse transformation R™*8T;4, become
(0; 2,0,0,0,0; 0;—2), (1;1,1,1, —1, —1; —1; —1), (2; 0,0,0,0,0; —2; 0).

These points, along with 9.64 and certain other points from 9.63, make up the complete
sets of vertices

9.66 (2,0,0,0,0,0; 0,—2) and (1,1,1,1, —1, —1; —1, —1)

of a (PA)s 24/2 (obtainable from 9.41 by means of the transformation Uz;'). Hence
the points 9.63 are the vertices of (SA), 24/2, of which a typical bounding (PA); 24/2
has the vertices 9.66. ‘

But the points 9.66, along with 9.62 and certain other points of the infinite set 9.6,
make up the complete set of vertices of that (PA), 24/2 which is obtained from 9.31 by
means of the transformation Uz'. Hence the points 9.6 are the vertices of (SA)s 2+/2.

The existence of :
(SA)g or 3y
is thus established. That of
133
follows by semi-reciprocation. There remains now only 2,,.
VOL. CCXXIX.—A 3 E
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9.7. Since T,48T 4, a symmetry of (PA), 24/2, transforms 9.61 into z, 4 x; = 0, we
have the interesting fact that the section of (PA), 24/2 by the 7-space z; 4 23 = 0 is
another (SA)s 24/2.

9.8. The common part of these two (SA)s 24/2’s, t.e., the section of (PA), 24/2 by

the 6-space
9.81 Ty 4 Ty A Ty ATy + X AW = 0 = 3; + X,
i3 a degenerate seven-dimensional polytope, which we shall identify with

(IA), 24/2.
Of its vertices, which are equivalent by means of the symmetries
Tijlc& RTijlcs (?’7 j: k: =1,2,3,4,5,6; v # j # k # 7’);

those distant 24/2 from
9.82 (0, 0, 0, 0, 0, 0, 0, 0)
are
9.83 (0,0,0,0,0,0; 2, —2), (1,1,1, —1, —1, —1; 1, —1),
2, 0,0,0,0, —2; 0, 0).

These 72 points, which will soon be seen to be the vertices of
(TA)s 24/2,
are equivalent by means of the bifid reflections
Tis STins (5,79, k= 1,2,3,4,5,6; ¢ # 7 =k # q).

(Note that they, unlike 9.41, possess also the symmetry T.)
Of these points, those distant 24/2 from

9.84 (0,0,0,0,0,0; —2; 2)
are ’
9.85 1,1,1, —1, —1, —1; —1; 1),

The transformation R makes these 20 points recognisable as the vertices of

Lo 24/2.
tyay = (1A)s

Now, by 8.16,

and (by 8.9) (IA), is bounded entirely by (PA),_,’s, these being all equivalent. A
typical bounding (PA), 24/2 or tay24/2 of the {5 24/2 9.85, has the vertices

(,1,1, —1, —1; —1; —1; 1)
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These points, along with 9.84 and
(2,0,0,0,0; —2; 0; 0)

(which also occur among 9.83), make up the complete set of vertices of a (PA); 24/2 or
hys 24/2 (obtainable from 9.45 by means of the transformation Ug'). Hence the
points 9.83 are the vertices of (IA); 24/2, of which this (PA); 24/2 is a typical bounding
figure. | ,

But the vertices of this typical bounding figure, along with 9.82 and certain other
points satisfying 9.81, make up the complete set of vertices of the (PA); 24/2 which
we obtain from 9.41 by means of the transformation Ug'. Hence the infinite set of
points whose eight co-ordinates, all even or all odd, satisfy 9.81, are the vertices of
(TA), 24/2.

Thus we have established the existeﬁce of |

‘ (IA), or 299,
the last of the polytopes 7.45.

9.9. By applying certain other symmetries of (PA)s24/2 in the way in which
T,ST,s was applied in 9.7, it is found that there are in all 120 sections of (PA), 24/2,
through any one vertex, which are (SA)s 24/2’s ; namely, one section for every pair of
opposite vertices of the vertex figure, (PA)s. The 7-spaces of these sections are as
follows :— ‘

[ (1) T+ %+ %+ A0+ % A0 2 =0,
28 like Ly + Ty + X3 + 3y + T5 + Tg — T, — Ty =0,
35 like X+ Xy 25+ — g — g — X, — Xy = 0,
28 like ' T, — x5 = 0,
28 like Xy + g == 0.

These 7-spaces may be called «“ primes of symmetry * of (PA),24/2 or of (PA), 24/2.
For, the reflections in them, iz.,

S, TijSTij> TijleTijkly (ST“)'g or (?/j), “ (STQ)ZS or (?/j) Tija

are symmetries of the polytopes.

10. Nine-dimensional Co-ordinates.
10.1. Consider the infinite set of points whose nine Cartesian co-ordinates are mutually
congruent modulo 3 and add up to zero. These points, lying in the 8-space
10.11 Ty 4 %y + T3+ Xy + @+ X 2 + 2 + 2 =0,

can be identified with the vertices of
(PA), 3+/2

3E2




- 394 H. S. M. COXETER ON POLYTOPES WITH

by applying to them the transformation

3 QT,,
where

5 -1 —1 —1 —1 —1 —1 —1 2 )

—1 5 -1 —-1 —1 —1 —1 —1 2

—1 —1 5 -1 —1 —1 —1 —1 2

—1 —1 -1 5 —1 —1 —1 —1 2

10.12 Q = ¢ -1 -1 —1 -1 5 —1 —1 —1 2

-1 -1 —-1 —1 —1 5 —1 —1 2

-1 -1 -1 -1 —1 -1 5 —1 2

-1 -1 -1 -1 -1 —1 -1 5 2
2 2 2 2 2 2 2 2 2]

and T, changes the sign of 5. (It is easily verified that Q satisfies the conditions which

make it a congruent transformation.)
Since we are only considering points satisfying 10.11, the relation

P A\ ’ ’ ’ ’ ’ ’ ’ ’ ’
(wla Lo, Xz, Xy, Xg, Lg, 337, x8> xQ) 3Q’18 - (CC 1 z 25 X3, Xy, X 5 x a8 z 7 X g, x 9)

implies
10.13 e = — L (2ns + x,),
Ix’g = 0.

The general point

10.14 (3?/1 + 2, 3?/2 + 2, 33/3 + 2, 3?/4 + 2, 3?/5 _l— 2, 3?/6 + 2,
8y, +2, 3ys+2 3y, +2)

of the set considered, therefore becomes

1015 (24 +7, 2ys +72, 2y +2, 2y +2, 2y + 72,
2?/6 +Z,> 2?/7 + z/> 2?/,8 + z’> O)’
where
=Y _l" 2,

&
iy,sz_?/s—%_z-

The sum of the new co-ordinates is

9 9
D, =5§ 3 g, g —a) = § (@ —Ts) = 4% — Y-

r
r=1 r=1

Thus we have obtained a vertex of (PA), 2 4/2 as given in 9.1.

Conversely, if the point 10.15, satisfying
Bo+Yet+ys Y+ Ys +Ye Ty T Y =2
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(which makes the co-ordinates add up to a multiple of 4), is a general vertex of
(PA), 2 4/2,
we can make it correspond to the point 10.14 of the original set (10.1) by putting
J’ z=1y'y — i,
j?/s—':—?//S"z'a
lh=—vs+72 +t
The identification is now complete.

10.2. By taking those points of the set 10.1 which are distant 34/2 from the origin,
we obtalin the vertices of
(PA)s34/2
in the beautiful form
1021 (2,2,2, —1,—1,—1,—1,—1,—1), (3,0,0,0,0,0,0,0, —3),
1,1,1,1,1,1, —2, —2, — 2).
Thence we obtain two different sets of co-ordinates for the vertices of
namely
@ —1,—1,—1,—1,—1; 2,2, —1), (1,1,1,—2, —2, —2; 1,1, 1),

(O, 0,0,0,0,—3; 3,0, O)
and

10.22 (030:030,()?0, —3; O; 3): (2>2’ _1> _1> "—ly _'1> —'1> '—1; 2)3

(1’ 1’ 1> 1: 1’ —2, ”“2) _27 1)> (33 0, Ov O, 0;0,0, _3, O)
Trivially transforming® the former set to make it more symmetrical, we have, for the
vertices of

(PA)7 6'\/2,
1023 (5, —1, —1, —1, —1, —1; 2,2, —4), (3,3,3, —3, —3, —3; 0, 0, 0),
(13 1? 1? 1; 1) _5; 4, ‘—2, _2).
Proceeding one stage further, we get the vertices of
(PA)s 34/2
in the alternative forms
10.24 (1, 1, ]-, 1, 1, "2: —'2: —'2> 1): (2, 2, _"1’ —'1’ _"1’ —1 3 ""1? —1 ’ 2)’

(0; Oa 09 Oa 0: "'33 Oa O, > 3)
and

10.25 (0, O, O, 5 29 —l$ —1 5 1, ]-$ '—'2)a (]-> 1$ —2; 0) 03 O; 2> ——]-: —1)~
2, —1,—1; 1,1, —2; 0,0, 0).

* By means of 2UZl, in the notation of 10.6.



396 H. 8. M. COXETER ON POLYTOPES WITH

The latter form (10.25) is of special interest, as it corresponds to Mr. P. HALL’S notation
for the twenty-seven lines on the general cubic surface. For, if we associate the nine
co-ordinates with the symbols

81: 823 837 tl) tz: ta; u‘l: g, u:j;

and accordingly write (e.g.),

(s =(0,0,0; 2; —1, —1; 1,1; —2),
10.26 J@61193-——(1,1;——2;0,0,0;2;—-1,——1),
‘l.slt3:(25 _1,—1; 1713 _2; 07050),

then the 27 points 10.25 are represented by the symbols
10.27 Ll WSy S

(where ¢, 7, k = 1, 2, 3 independently), in such a way that any two of the points are
mutually distant 6 or 34/2 according as the number of the letters s, 7, v which occur with
different suffixes in the two symbols is even or odd. For instance,

Sala, Sals, Ssla, Ssls, UySy, UgSy, UsSy, LUy, LU, bl

are all distant 6 from s,¢, ; while the three points specified in 10.26 form a triangle of

sides 34/2.

10.3. In 9.9, we saw that (SA)s can be obtained as the section of (PA), by the 7-space
through any vertex perpendicular to any diameter (i.e., join of a pair of opposite
vertices) of the vertex figure at that vertex. Of such 7-spaces, 120 pass through the
origin. According to the co-ordinates 10.21, these consist of

{84 like =z + 2, + 23 = 0,
36 like Xy — Ty =0

(10.11 being understood). In this manner, we obtain the co-ordinates of
(SA)s 34/2

in various ways as a section of (PA), 34/2.
In 9.8, we saw that the section of (PA), 24/2 by the 6-space 9.81 is (IA), 24/2. It
follows (by applying Tyse;, in the notation of 9.2) that the section by the 6-space

7 ’

@'y + &y + 7'y =y @5 + e, Tg=1Tg



REGULAR-PRISMATIC VERTEX FIGURES. 397

is another (IA), 24/2. Hence, by 10.13, the section of (PA), 34/2 by the 6-space

10.31 Ty + @y + Ty =0 + &+ T =T + T+ T =0
18 :
(TA), 34/2.
Taking points distant 34/2 from the origin, we obtain the vertices of
(IA), 3y/2
in the form
r -3, 0,0,0; 0,0,0), (0,0,0; 3,0, —3;0,0,0),
10.32 { (0,0,0; 0,0,0; 3,0, —3),
L@ —1,—1;2 —1,—1;2 —1,—1), (1,1,—2; 1,1, —2; 1,1, —2).

10.4. In 10.2 we considered those vertices of
(PA)y 32

which are at distance 34/2 from the origin. Let us now consider those which are at a
few greater distances.

Distant 6 from the origin, there are 2160 points—
J'(53 2, _—1’ _1: '_1: _"1) —‘17 "'13 _1)3 (1, 1, 1: 1: la 19 ]-: —2: —5),
10.41 1(4, 1,1,1,1, —2, —2, —2, —2), (3,3,0,0,0,0,0, —3, —3),

@ 2 22 —1, —1, —1, —1, —4).
Distant 34/6, there are 6720—
(6,0,0,0,0,0,0, —3, —3), (3,3,0,0,0, 0,0, 0, —6),
(57 23 2: '_]-: '_]-7 '—"17 —_19 —“1: '_4:), (47 19 1: 1, 1: 15 _29 _2, _5)3
10.42 '
(4’ 4, 13 1, '_2) "‘2: _’2, —27 ’_2)> (2: 29 2, 2} 2, _‘l: _17 —4: "‘4’)9

(37 3: 3: O’ O: O, _‘3, ""3, —‘3)
Distant 64/2, there are 17280 4 240—

r(S, ‘_"17 _"19 —1’ ’_l, _13 —‘13 _1: '_]-)7 (17 19 ]-: 17 ]-7 ]-’ 1) l, '—8)3
(1,1, 1,1, —2, —2, —2, —2, —2), (2,2,2,2,2 —1, —1, —1, —7),

(63 3, Oa 09 O$ 0, _3: ’_33 —‘3), (3$ 3, 3, O, 0: 0, O: _‘3, _6),
10.43

)

(5,5, —1, —1, —1, —1, —1, —1, —4), (4,1,1,1,1,1,1, —5, —5),

(5’ 29 2’ 23 _1, ’—1: _19 _“4> "‘4‘)’ (4; 49 1, 1: 19 _'2-, _2> ——'23 ’—5),

- (3, 3,3,3,0, -3, —3, —3, —3),
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and
(4, 4,4, —2, —2, —2, —2, —2, —2), (6, 0,0, 0, 0, 0, 0, 0, —6),

(23 2a 2a 2> 2: 2; “_47 _‘4: ’—41)

The last 240 points are obviously the vertices of (PA)g 64/2, being the same as 10.21,
only doubled throughout.
It is easily proved that the points

10.41, 10.42, 10.43

are respectively the vertices of
2 3V2, by 31/2, Ll 34/2.

Since these polytopes all have precisely the same symmetries as (PA)s, it is only necessary
to identify one vertex of each.

By 7.8, the centres of the 4,,’s (8,’s) of 45, (= (PA)s) are the vertices of 2,, X (= 24 X).
A typical 8, 34/2 of (PA)s 34/2 (as given in 10.21) has the vertices

(3,0,0,0,0,0,0; 0; —3), (1,1,1,1,1,1, —2; —2; —2).

Its centre, |
. (1,1,1,1,1,1,1; —2; —5)%,

after multiplication by 2, occurs in 10.41.
Similarly, the centres of the 4,,’s («,’s) of 4, are the vertices of 1,, X.
A typical «; 34/2 of (PA)s 34/2 has the vertices

(3,0,0,0,0,0,0,0; —3).

Its centre,
(1) 17 ]-a 17 17 13 la 13 —8)%3

after multiplication by §, occurs in 10.43.
Finally, by the definition of truncation, the centres of the edges of (PA)s are the

vertices of
t, (PA), X.
A typical edge of (PA)g 34/2 is terminated by the points

(3,0; 0,0,0,0,0,0; —3).

Its centre,
(1’ 1 5 0’ Oa O: O’ O, 0> _2)%’

after multiplication by 2, occurs in 10.42.
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10.5. The following table exhibits some particularly interesting sections of (PA), 24/2
and of (PA), 34/2 :—

(PA), 24/2 (PA)y 34/2
Xy = X, (SA)g24/2 (SA); 3 4/2
Xy = Ty = Ty (TA), 2 4/2 (TA), 34/2
Xy = Xy = Ty = W, hd¢2 /2 hd¢3 /2
Xy = Ty = Xy = T, = W agh 2 4/2 agh 3 4/2
Xy = By = Ty = Xy = Xz = Lg [azh, 3;] 2 /2 [ash, 82] 34/2
Ty =Xy =3 =Wy = X5 = g = Iy (ar=7520) b 2 4/ (=77 %) B3 /2
Xy = Xy == Ty = By == Xy = Lg == By = Wg 8,2 4/2 8,6 /2

Here
(02 =7z o) B
stands for an infinity of (PA),’s (isosceles triangles of sides 1, 4/2, 4/2) filling a plane.
It can be obtained by uniformly compressing a {3, 6} or «,h in the direction of one
edge.

The fact that corresponding sections of (PA), 24/2 and of (PA), 34/2 arc similar, in
the linear ratio 2:3, except in the last case (eight co-ordinates equal), is merely a
consequence of 10.13.

10.6. (PA), 34/2 clearly possesses 84 symmetries U, and 84 symmetries V,,, defined
as follows :—

Uy increases the co-ordinates w;, «;, @, each by 2, and diminishes the remaining six
each by 1.

V. diminishes z,, ;, #, each by two-thirds of their sum, and diminishes each of the
remaining six co-ordinates by one-third of the sum of those six.

Thus Uy, is a translation (through distance 34/2); and Vy; is the rotation (through
angle =) about, or the reflection in, the 7-space

Z; +w, tx,=0=w + 0+ + 2 + &5 + ¥ + T7 + ¥ + Xy,
according as we are considering the whole 9-space or only the 8-space in which (PA), 34/2
lies.
Let ¢, d, e, f, g, b, %, j, k denote all the numbers 1, 2, 3, 4, 5, 6, 7, 8, 9, arranged in
arbitrary order, and let (#) (as usual) denote the transposition of the two co-ordinates
@;, ;. The simplest relations between our new symmetries are as follows :—

10.61 Vi = (Voue Viie) = (Ui Vis)? = Upge U Uy = 1,
10.62 Upi (1) = (%) Uy

10.63 Vo (4) = (4) Vag = Vo Vs,

10.64 Ve Vign = Vi Vigpe

Note that Uy, Uy, Uy, simply increases , and diminishes #,, cach by 3.
VOL. CCXXIX.—A 3F :
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10.7. Now let ¢, 7, & be 'any three different numbers among 1, 2, 8, 4, 5, 6, 7.
The transformation 10.13 gives the following correlation between the symmetries of

(PA), 24/2 and (PA), 34/2:
Uz U R | Ugi
- U, R Uss
U, Uzt Ui
Uij Ufju
U, Ui U,
R Ui Uy,
(%) (1)
(i8) I, (i8)
S (89)
T, ST, (19)
T, ST, Vi
Tiis STy = [efgh . k8] Vi
(18) Viso
() T, Vi
T'ij (@7 ) Vijs»
Ty (18) Vigy
ST Vi Vas Vass Visr Via Ve Vi

The factors in this last product of seven V’s are all permutable, by 10.61, since every
pair of them have just one suffix-number in common. 1t is interesting that V., appears
as an extension of the bifid reflection.

In verification of 9.22, we have :

when 7, 7 < 8,

{(89) (IL.?) vVij\.r}s - (1‘7)3 . (89) Vij‘.l (89) . vwﬁju (89) Vijn
(%) . Vz‘js . Vz‘js
= (1)),

I

and when j = 8,

{(89) (@8) Vi8‘.,'}3 == (89) . ('0.8) Visn (78) . (’59) Visu (@.9) . (89) Vi89
- (89) . VfS‘J . Vz'sv . (89) Vz‘w
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10.8. Let a, b, ¢ be three different numbers among 1, 2, 3,4, 5,6,7,8,9; d, e, f, three
different numbers among 1, 2, 8, 4, 5, 6, 7; ¢, h, 4, three different numbers among
1,2,3,4,5,6; 7,5, twoof1,2,8; k k', twoof4,5,6; I,',twoof 7,8,9. Also
let T denote the reflection in the origin (¢.e., the simultaneous change of sign of all

the co-ordinates.
With this notation, the chief symmetries of the polytopes under consideration may

be tabulated as follows :—

Polytope. Co-ords. Symmetries. No. of cases.

(PA), 34,2 10-1 (ab), Vier Uppe , 36 |- 84 - 84

(PA); 34/2 10-21 (ab), Vape 36 - 84

(PA), 34/2 | 10-22 (de), Vag, Vsso 21 35 417
{(PA)7 6+/2 10-23 (gh), (), Vyu 15 4+ 345

(PA); 3 4/2 10-24 (9h); Vi, Vige™ 15 +20 41
{(PA)6 34/2 10-25 (15", (kE), (W), Vi 9 + 27

(IA); 34/2 10-32 (7", (kk), (1), Vi, T 9 +27 +1

(IA), 3+/2 10-31 (99, (kK (W), Vi, T, Usg 9427 +1 427

10.9. Below are summarized the most convenient co-ordinates for each of the poly-

topes 7.45.
( 0’ O; Os 27 —‘1} —1 5 1; 17 —2)7

(
2,1 34/2 = (PA)g34/2: < (1,1,—2; 0,0,0; 2, —1, —1),
2, —1, —1; 1,1, —2; 0,0, 0).
2, —1,—1; 2, —1, —1; 2, —1, —1),
3,0, —3; 0,0,0; 0,0,0),
0,0,0; 3,0, —3; 0,0,0),
0,

L (
[(
(
(
(0,0,0; 0,0,0; 3,0, —3),
(1,
(
(

150 31/2 = (IA)g34/2: <

21,1, —2; 1,1, —2).
3,3, —1, —1, —1, —1, —1, —1),
1,1,1,1,1,1, —38, —3).
(2> O$ 07 09 0) 03 O> —‘2)3
(1, 1,1,1, —1, —1, —1, —1).
(7a "—L '—1> ‘“17 _1> —]-’ '—la —-1)7
5,1,1,1,1, —8, —3, —3)
132 4\/2: ( s Ay Ly Ry ) )

1 (3’ 37 3: ""1: ——1, “1: _'15 "'"5):

F
B 44/2 = (PA), 44/2 : i
f

21 24/2 = (SA); 24/2: <

L
f

|

(1, 1,1,1,1,1,1, —7).
* By 10.64, Vase = Vias Visg Vigae
3r2
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f (2, 23 22 '—1, "'"1: _1’ _1} _“1’ _1):
45, 34/2 = (PA)g34/2: < (3,0,0,0,0,0,0,0, —3),
1,1,1,1,1, 1, —2, —2, —2).

9 (

(5,2 —1, —1, —1, —1, —1, —1, —1),
(4,1,1,1,1, —2, —2, —2, —2),
(3,3,0,0,0,0,0 —3, —3),

222 2 —1, —1, —1, —1, —4),
(1,1,1,1,1,1,1, —2, —35).

24 34/2 <

@8, —1, —1, —1, —1, —1, —1, —1, —1),
(71,1,1,1, —2, —2, —2, —2, —2),

(6, 3,0,0,0,0, —3, —3, —3),

(5, 5, —1, —1, —1, —1, —1, —1, —4),
5,22 2 —1, —1, —1, —4, —4),
(3,3,3,3,0, —3, —3, —3, —3),
(4,4,1,1,1, —2, —2, —2, —5),
(4,1,1,1,1,1, 1, —5, —5),

(3, 3,3,0,0,0,0, —3, —6),
(
(

I\

143 31/2:

27 2; 23 2, 2’ _'15 _1: '"13 _7)7
1,1,1,1,1,1,1, 1, —8).

.

591 34/2 = (PA), 34/2: 9 co-ordinates, mutally congruent modulo 3, sum zero.
25 34/2 The same, but with 4 or 8 of them odd.

155 34/2 9 co-ordinates,* mutually congruent modulo 3, sum
zero, satisfying the following further conditions :—
(@) If the co-ordinates are divisible by 3, then the

three possible residues modulo 9 (namely 0, 3, 6)
all occur (for the co-ordinates of each such point),
one of them only once and the other two four
times each.
(b) If not, then the residues modulo 9 either are all
equal or take one of the following forms:
(8,1, (15 7), (7, 4,
(5, 2), @, 5), (5
(7, 4, 1%, (8, 5, 29),

* Tor these co-ordinates I am indebted to Mr. P. Du Var,
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331 24/2 = (SA); 2+/2 : 8 co-ordinates, mutually congruent modulo 2, sum
Zero.

133 24/2: The same, but with the further condition that the
residues modulo 4 of the eight co-ordinates consist of
two tetrads, such that the residues for each tetrad
are equal among themselves, those for different
tetrads not necessarily being different. (Thus the
residues must consist of either eight 0’s, 1’s, 2’s, 3’s,
four 0’s and four 2’s, or four 1’s and four 3’s.)

299 314/2 = (IA), 34/2: 9 co-ordinates, mutually congruent modulo 3, falling
into three definite triads (the same triads for every
point) each with sum zero.

These co-ordinates can be verified by the method of 6.1, the work being simplified by
the consideration that, if p # ¢, p,. possesses all the symmetries of #,,.

11. Groups Generated by Two Operations.

11.1. The group of symmetries of each existent polytope of the form

Ny (n = —1),

except
(=Dp (= [ %)),

can be generated by means of two or three special symmetries, two or three according
as the polytope is finite or degenerate. We shall prove this by considering each case
in detail, with the help of the following two general principles.
11.11. If certain given symmetries of the vertex figure (» — 1),, of a given polytope
n,, are known to generate the whole group of symmetries of (n — 1),,, and are expres-
sible in terms of certain symmetries X, X', etc., of n,, ; and if X, X', ete., suffice to
change any vertex of n, into any other; then X, X', etc., will generate the whole
group of symmetries of ,,.
11.12. If two symmetries, X and X', of a given polytope which differs from a second
given polytope only by lacking a certain symmetry Y of period 2 (z.¢., such that Y2 = 1),
are known to generate the whole group of symmetries of the first polytope ; and if X,
of odd order (say A), is permutable with Y ; then (since (XY)' =Y and (XY)"" = X)
the two symmetries XY and X’ will generate the whole group of symmetries of the
second polytope.

11.2, The group of symmetries of

0 = (m=mn-+p+1),

n,
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being simply the “ symmetric group > on m - 1 symbols (which can be taken to repre-
sent the vertices), is generated by any two cyclic permutations which ““ overlap ” (z.e.,
which have at least one symbol in common, the common symbols, if more than one, being
arranged consecutively in the same order in the two cyclic permutations) and together
involve all the symbols, without both involving an odd number of symbols. Thus
the simplest generation is by

11.21 (12...r) and (mm -+ 1),
where 7 = m or m + 1 (either, equally well). Another suitable pair.of symmetries is
11.22 (12...7) and (m —1mm + 1),
where ] )
— 471_@ " m A1 %
1*_2’_2] or 2[ 5 |

The truncation
0,, = t,o,

np
has precisely the same group of symmetries as o, except when n = p, i.e., m=2n -} 1.
Onn - tn“2n+]

possesses in addition the reflection in its centre, which we shall call T. By 11.12 and
11.21, its group of symmetries is generated by

11.23 (12...7T and (mm 4 1),
where
—o|™
=2 [ 2] -+ 1.

Alternatively, by 11.22, it is generated by
11.24 (12...7) and (m—1mm -4 1)T,
where B

oM X m 1

7 “2[_2J or 2[ 5 ]

11.3. If
P#EY

the group of symmetries of
(— 1)y, = [0 ]

(which is the “ direct product” of symmetric groups on p -1 symbols @, and
q -+ 1 symbols b)) is generated by
11.31 (nay ... @) (b,0,4,) and (bb, ... ) (0,a,.),

g “g+1
where

7:2[%}4{—1 and s=2[%}~|—1.

€6 = e 2

v Tm
2.

. 7
means ““ the greatest integer not greater than .
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Tor, calling these two operations A and B, we have

Ar = (bq bq+l) and Bs - (a'pa' +l)3

P

A = (a4, ...a) and Bt = (bb,... b,).

Thus A”** and B* give all the permutations of the a’s, while B**' and A" give all the
permutations of the b’s.
If p and ¢ were equal, we should require a further operation (of period 2) to interchange
the a’s and b’s bodily.
11.4. The group of symmetries of
Ny = B (m =mn 4 3)

1s gencrated by the permutations of the vertices of one bounding «,,_,, together with the
reflection (T, say) which simply interchanges one pair of opposite vertices. By 11.12
and 11.22, the group is therefore generated by

11.41 (12...7) and (m —2m —1m)T,,

where .
r=2|:m_l] or 2L'—'f:l
2 2

1n1 = ’Wm’

In considering

we shall use the co-ordinates 6.22. Let (12 ... r) denote the cyclic permutation of the
co-ordinates %, @,, ... «,; and let T; subtract the co-ordinates &, w; cach from 1.
Then clearly the group of symmetries is generated by

11.42 (12 ...7) and (m —2m — 1 m)T,,

where 7 is the same as in 11.41.
When m = 5, there is an interesting alternative generation. Let

ly] = () Tij'
(12) = [14] [24] [14]

Then, since

and
[14] = (12345)% [24] (12345)72,
the group of symmetries of
(PA); = 141 = b,
is generated by

11.43 (12345) and [24].
11.5. The principle 11.11 now proves that the group of symmetries of

(PA); = 2y
i generated by the three operations

11.51 (12345), (56) and [135.246]



0% OM] TOYYIM] B PUB SOJRUIPIO-GO JUIUTRIUOIL 04 JO 1[0 04 90 ppe ‘(019z A[IURISTOD
MOU ST YOTYM) 99RUIPI0-00 Yutu o1 doap ‘sudts ooatyy 98Iy o9 oFueyos ‘ry ym ogerado
‘894UIPIO-09 ST [[B O[(NOP ‘Gz 01 Jo Jutod [ore TINg UT o] 04 PR} SUROW S1[, & pue
%z Ty 3o SUSTS oY) sosuvyo FELY O[IyM ‘16 UT S pur 4 ‘GI'QT Ul POUGOP SI {5 OIOTM

f 0¥ g

UOT)RULIOJSURI) o) Jo sueowr £q ‘€6
10 196 syutod o) oqur pouriojsuesy A[[ENI0R 0¢ Ued L7071 10 ¢g0T squtod oyg ‘MoN

GQLIOOMI S ‘oG FIoom) Ly Yy ‘g g TJoomgare [
oI M
A G () T9°T1

SOTIWWIAS 17 - ¢ 079 sessossod ‘Gz (1 ULIOf oY) Ul

‘a/Ve AV a)
18771 MBS OM ‘0T Ul ‘9°[}
(7L U, = L [89%5 - LegT]
onfeA oY s9¥L} ‘UoIRIOU

TNO UT UOTM  TOTRIOI PYIQ ,, 9 ST 10998 oY1 ‘() Jo Amowuids & se popiesoyy)

"89%6 * LOET
. TOTIMATISANS PYT( |, O} [HIM 107304 ‘SIOQNU-XIJNS 47310 077} JO UPAIS JO
(Log¥PeaT)

uorgejnurzed o1[oLo o)
Jo surewr A pageIduLS Aq wes ‘0AaIns oryrenb ouwyd [eroued o1g jo 9 squeSuelq 8z oYl JO

swistydrowoine jo (0ZG1SFHT = 41 | L § 10pao jo) dnoid oyg 9ey) SMOT[oF 91 ‘A[ejusprouf
"1,€'6 JO anqara uT ‘punoj isnl oary om 9soyg Jo
SUIT0Y UT 0INTT X0)I0A Y JO TG TT SOLIJOWWIAS o1} ssoadxo weo om ‘A[eur *SUOTIOPAI
PYIq O3 [[® 9AIS [89FZ * LGET] UMM 0897 PUB ‘§ L 9 ‘C P ‘€ G ‘T JO ,mﬂoﬁﬁgﬁém
ouY [ 0A1S (L9G¥EET) pue styy ‘(81) worysodsuery oy (gg 6 Aq) 0A1S [89%5 * LGET] pue
STY ‘[8LGE * 19%3] 0AIS 1010809 3G 11 SoLIJOWWAS oY) “I0] °FE'6 JO UOIJRIOU Ay} ul

[89%z " L961] pur  (L9GVEGT) (SN
‘om1 oY) Aq pajeIouas ST
g = *{yd)

jo sotgewrwAds jo dnois oyg qeyy sesoad oydrourad oures ot
“0MY 09 SOLTIOTUTIAS 0IY] OSOTY SONPAL [[YS oM (§°TT) UOT008 XU O} UT

Tova - ¢e1] = (93]

Aqrquepr oy Aq TG TT 0} Poe[al div
YOTYM ‘@H [T SOLIOWIMAS o1} sossessod ¢F' 9INSy X09I0A (POTruSew) 01) O[IYM ‘10190
Kue ojut x0110A Lue 9FUBYD 04 VOLYJNS SOLIJOWWAS 980U] IO "$F'6 JO UOIBIOU 93 UI

HIIM SHJOLATOd NO YHLEXO0D W 'S 'H 90¥



REGULAR-PRISMATIC VERTEX FIGURES. 407

to the seventh and eighth, and finally divide throughout by 3. Kxplicitly, in virtue
of 10.11, the relation

. . . . ) . o N i T ! _I. J / N ’ ,.I 4
(1’1) Lg,y X3, ',I’d: 1/57 a’e: 1’7: ',I'Sa x{)) 291123 lbbw 15 - ('L 1 Lgy Lgy Lgy & 59 x 69 '1'7’ ws)
implies
J(x’j =
!
-] &r 3
L2,

The symmetries 11.61 become (by the same transformation) the 15 1 4 20
symmetries,

11.62 - (@), (78), [foh.uk] (f, 9. h 0,9, k=1,2,8,4,5,6),
of the

(1 — 22 — ) (j=1or2or3),
L 425, + ) (k:4’or50r 6),
L (3 + 2z, + =) (l="17or8).

I

I

(PA) 24/2

whose vertices are 9.43 ; (7)) being a transposition of the suffix-numbers, (78) the trans-
position of & and b, and [ fgh . 4jk] the operation 9.44.
The details of the correlation are as follows :

Vertices.
Uy 8, a;
UsS; b,
UsS; Cijr
8ty Cix
by Uy by
b3 Uy a;
typ_s Ug Cyz
Symmetries.
(7 ()
(kE') (kE")
(78) (78)
(79) [123 . 456]
(89) [456 . 123]
Vi 55"k K]
Vis LkE" . 575"k
Vo (gk)

VOL. CCXXIX.—A 3G
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Here

4, 959" are 1,2,3 Inany order,
and

k, E,E' are 4,5,6 inany order.

We have seen that the whole group of symmetries of
(PA)s = 25

is generated by 11.51 and a fortiors by 11.62. Hence it is also generated by 11.61, and
consequently by the fwo symmetries

11.63 (147258369) and Vi
For, we at once obtain

Vlfl!); V1475 V2479 V2577 V258> V358: V3689 \7369 5

and thence, by 10.63, all the transpositions
(64), (97), (12), (45), (78), (23), (56), (89), (31) ;

which in turn give the rest of the V;;’s.

Incidentally, it follows that the group (of order 6! Py = 51840) of automorphism
of the 27 lines on the general cubic surface, can be generated by two operations. For
details, see the Appendix.

11.7. Since
(1234567) = (12) (23) (34) (45) (56) (67)

() = (STij)3
[1857 . 2468] = T,; T5; STy5 Ty,

and

and

it follows (by 11.11 and 11.52) that the group of symmetries of

(PA)S == 421

is generated by
S and T, (0, 7]=1,2,8,4,5,6,7,8; 1),

in the notation of 9.2.
The correlation 10.7 changes these particular symmetries into

(89) and (i) Vi

But, by 10.63, -
(7:7) = Vyhi Vyhj Vghi-

Hence the group is generated by
Vijk (@:J7k:1>23,4:536>7,89®¢77£k¢@),
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where the suffis-number 9 may be excluded, in virtue of 10.64. Finally, it is generated
by the two symmetries .
11.71 (12345678) and Vi,.
For, these together give
Voses  Vases V567; Vasr: Vara s
whenee we obtain the particular transpositions

‘ (14), (47), (72).
Since
(12) = (72) (47) (14) (47) (72),

we can deduce all the permutations of 1, 2, 3, 4, 5, 6, 7, 8, and thence the rest of the
3 s
Vin's.

It follows now from 11.11 that the group of symmetries of

(?A)ﬂ == Ogy
is generated by
11.72 (12345678) and Vi, and Uy,
in the notation of 10.6.
11.8. From the point of view of symmetry, (PA); differs from ifs semi-reciprocal

(IA')G == lgg

only by lacking the reflection in its centre. Ience, by 11.12 and 11.63, the group of
symmetries of the latter polytope is gencrated by

11.81 (147258369) T and Vg

For the degenerate
(IA)'; = 299,

we have to insert a translation. So its group of symmetries is generated by
11.82 (147258369) T and Vi and Ugg.
(It seems possible that the T ” is here unnecessary, but this has not been proved.)

2, and 13, have the same symmetries (11.52) as (PA), = 3,,.

241 ’% ]-42 2 i3] ’ (] }71) 39 (PA>8 == 4:21‘
251 ) 152 ss %) 59 (11.72) 53 (PA)9 == 521.
By 11.11, the group of symmetries of
(SA)S = 34
is generated by 11.52 along with a suitable translation, in fact by
(see 9.6).

Now only 135 remains to be examined.
11.9. By 7.8, the vertices of 135X are the centres of the «,’s of 3y.
3a2
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Consider the (SA)s 84/2 whose vertices have eight co-ordinates, all congruent to 0
or to 4, modulo 8, and adding up to zero. The centre of a typical bounding «; 84/2 is
11.91 (1,1,1,1,1,1,1; —17).

In virtue of the symmetries

(1234567) and T35 STy, and  Tygy, R T1s50,
this point gives rise to the totality of points whose eight co-ordinates, adding up to zero,
have, as residues modulo 8, cither eight 1’s, 8’s, 5°s, 7’s, four 1’s and four 5’s, or four
3’s and four 7’s. Since these points possess the additional symmetry T'* which reflects
in the point 11.91, they must be the vertices of 155 X (in fact, of 155 44/2).

Hence the group of symmetries of
Iss
is generated by

12. Truncations of n,,. Tables.
12.1. The only non-trivial polytopes of the form 7.31 are

12.11 0,p = [0t o, 2,17,
with the existence condition 7.32. For otherwise, the simplest possible vertex figure
which does not reduce to a prism with only two constituents is

[y, g, Bq]’
VE+E+HD > 1

which has circum-radius

Clearly
12.12 Oope = Opy = by g
and
12.13 Onll == [O(n, 62]4.1‘::- tz Yn+3.

In particular,
Og00 = o4
and
O = {3, 4, 3.
Thus the only new polytopes which arise in this way are
12.14 - T

i
’ Oy

of which the last three are degenerate (by 7.46).
* In terms of the usual symbols, ,
T = (UssUsUn')? R™MIR (U12Uz'Uss')"
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As in the case of n_, the number of dimensions is

rq°
=n+p+q+1L
12.2. By 7.6, the number of vertices of O,,, is

12.21 (Cln) = [npql
Also, by 4.6, the elements of

[“m %ps ‘xq]
:t;*:l-ll) (g’tll) (g-:-ll) [‘Xn': Ay aq»]’s,

0=n =< n,

consist of

for all ', p’, ¢’ satisfying

0=p' =p
0=¢ =gq

Hence, by 2.52, the elements, other than vertices, of O,,,, consist of

12.22 () = G () () L

Oppry’s.

As in the case of n,, we fix the order of the suffixes so as to distinguish between
equal elements (such as O, and O, r # s) which are of different type. In the case
of Q,5,, equal elements are always equivalent, but the division into types indicates that
various kinds of elements can be divided uniquely into three (indeed the ¢,¢,’s into six)
congruent sets.

By 2.41 and 4.71, the order of the group of symmetries of O,,, is

12.23 Gn=2n-+1) (p+1)! (¢+1)! [npq],
where \

AN=1F ey + o T €np T 2pg €gn Snp — Tp0 €50~ €40 S0 — €u0 €p0 — 200 €40 Sgo-

12.3. We saw in 7.35 that

12.31 0 t.n

npg = “n''pgt
There are, by 5.8, other truncations
tmpq
for all
l<n
and also (since all (n - 1)-dimensional elements of n,, are of type n,,) for
l=mn-+1.

12.4. One naturally tries to obtain some sort of higher truncations by taking for
vertices the centres of all those elements of #n,, which are of the same type

Ny,  (p ¢ > 0).
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The results are as follows :—

If ¢" = q we obtain ¢, , ,p, (by the theorem stated at the end of 7.8).

Similarly, if p" = p we obtain &,_,_; ¢,

But if p > p"# ¢’ < ¢, the resulting polytope is not uniform, its edges being
unequal. (The case p’ = ¢’ offers a new field for research.)

To take a very simple example, consider the edges of the triangular prism (—1);.
The centres of the lateral edges, which are of type (—1),; (since they do not belong to
the base (—1),,), are the vertices of £,2, _,) = «,. But the centres of the basal edges,
of type (—1);,, are the vertices of the thin triangular prism [oyd, «,].

: w1 [npyq] : - :
12.5. By 7172, if | =< », tn,, has (7i1) = T—1)74] vertices. By 5.8, its vertex

figure is [a;, (0 — 1 — 1),,].

But, by 7.73, ¢,,:1m, has (p +1) (¢ +1) %% vertices. Its vertex figure is

[tnt1s (g1 %g1)].
These facts are sufficient to determine all the numerical properties of

tn,, (I =mn 1)

In particular, it is bounded by

(n +1) T@%% by (n —1),’s
and '

(p+1 [#f_%])_g] b Np—1y, '8
and

[npql B
(¢ +1) np (@ — 1] by gy S

12.6. In the following tables, the elements of each polytope are given in a column.
The numbers referring to equal elements of different type are bracketed. In 12.7 and
12.8, the type-symbols are given immediately after the numbers ; in 12.9 they appear
at the ends of the lines. In 12.7 and 12.8, the numbers unaccompanied by type-symbols
refer to «’s in the first category of 7.5; in 12.9, such numbers refer to vertices (t.e.,

every line ends in a type-symbol except that headed * &, 7).
Everything in these tables is deducible from 7.4, 7.7, 7.9, 12.1 and 12.2, the values of

[ p q]
(=D pql=1,

[0pq] = (1),

[n11] =2"(n -+ 2)(n -+ 3),

[221] = 720,

[3 2 1] = 10080,

[4 2 1] = 483840,
[521]=[331]=[222] = .

being (by 7.6 and 8.7)—



413

280 = £(¥]) eT(1

—) ="(V1)

REGULAR-PRISMATIC VERTEX FIGURES.

T = *(vyg) o =*vg)  (1—) =*(VY)
1 =*%vd) To="va) (1) = ﬁﬁc
— 0 senyredoxd oy sepnjout o[qe} SIL—4'N
Hy MHMV P s+l
L 4—Db s I
0 mm+m+mv mmii« w .
¢ ?
. s—b s—d |
0| A?;iv tJ&v J
| sy I+ I.w 1
(=) AT&v T£ |
Hms n.«su
84 : ﬁl_l.w HlT 4
(=) ?i H+&
Loy 2+uG Jv. 2+up
Oty 3+u6 ;
00u (6+2) g+ug T+
>0 (ez | o0 | (e oo
] i) | ((§5) @t
(¢+u) (31+u) g (g4u) (3+u) «g 000 Am.m@v Am +5 +&v N 0 (seSpm)
o) | @+ ((34) )
(e-+u)g 4G a1t W) | 4D+ | o (sonsop)
otu etu 1+b+d b+d . : SUOISUAWITP JO "ON
i (€14) g+ud i (€+u) ghug (1'341) i (g+b+d) (Fa+7) i (14D) § (14d) (“a+1) | : dnoid yo 30p1Q
gtug = Tiy stuly = Ty T+b+dydy — m&o _”&o 2«8”_ - E&:.lv T omreN

‘sodogL[oJ Jo seeg equyu] 03 Suisuopeq esoys ‘Afewreu “u sedojLjog moidwig oYy jo @iavy, *L'7|




414 H. 8. M. COXETER ON POLYTOPES WITH
12.8. TaBLE of Special

Name : : 2,==(PA), 1,,=(TA)s 351=(PA), 2,,=(8A), 1, 45,=(PA),
Order of group : 51840 103680 2903040 2903040 2903040 696729600
No. of dimensions : 6 6 7 7 7 8
(Vertices) %o 27 72 56 126 576 240
(Edges) oy 216 720 756 2016 10080 6720
Oy | 720 2160 140 4032 10080 40320 1oo 60480
1080 | 14 30240 | 1y,
Os 1080 200 10080 20160 200 241920
1080 1, L20160 1,
[ 432 210 216 1,, 12096 2.0 | [12096 1,
Ay <4 12096 300 4 483840
L 216 201 L 216 1,2 L 4032 201 L 4032 1,
Bs | 270 |1, 7560 | 1,
( 4032 310
s 72 250 4032 290 2016 1, 483840 | 4,
. 2016 301
Bs 27 | 2y 756 | 244
27 1, 1512 1,
hys
27 1., 756 1,,
138240 | 4,,
Og 576 330 576 250
69120 | 4,,
Bs 126 | 3,4
hys 126 14
(PA)s = 2y 56 | 24
(IA)e = 1, 56 | 1,
oy 17280 | 4,
B4 2160 | 4,,
ey
(PA)'I == 321
(SA)7 = 25
132
g
8
hys
24
142
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Polytopes n,,.
24 142‘ 5o =(PA)y 25 Lss »331:(SA)8 . 15, 2,5=(IA),
696729600 696729600 el 0 ey oo © )
8 8 9 9 9 8 8 7
2160 17280 o) S ) 3] s
69120 483840 ) o) o) . ©
483840 2419200 | 1, | o o 1oy | @ 0 | 1 | ®
2419200 1 . . 1, @ 1
1209600 | 2, o0 o0 " 0 0 o0 200
1209600 | 1,, Loy © Loy
967680 | 2,, 1451520 | 1,, 0 26 1a o0 1, 0 20
© : o0 300
241920 | 2, 241920 | 1,, o 201 | P o0 1y, © 2ot
604800 | 1, 1, o | 1,
K 3 . Ty | [0 2
483840 | 2, | 483840 | 1, | o o | 2 My { " 3 "
© 301 @ 103 ® 202
60480 | 2,4 0 214 @© 24
I 181440 | 1, ' 1o o | 1, ‘
60480 | 1,, 1y o |1,
138240 | 2,, 69120 | 1, 0 Boo © 230 14 ) 30
@ 311
o) 1y
30240 | 1, 1,
0 1 |
: ' 0 25
6720 | 2, 0 21
© 21e
6720 | 1,, 1y @ s
®© 510 :
17280 240 W 240 15 0 330
@ B
2160 | 1, 1,
x 3
240 |. 231 jes] 231
o ® 13,
240 | 14 P
@0 1
®© 50 © 250 . *
@© 54
]‘51‘
®© 2n
142
VOL, COXXIX.—A 3H
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12.91 ANarocous TaBLE for O,y = loy, s

Name : Op11 /

Order of group : (1 + 2g,1) 2¢3 (0 + 3) ! /
No. of dimensions : n-+3 / Type

(Vertices) o, 2% (n + 2) (n 4+ 3)

o’ 1 2m+2 (n 4 3) (ZZ,—:_%) Owoo

-3
Jr valv.’. <::, ~{+ 3) 01:,’10

Lo 42 ] 13

L (n )
L 2n~] 2 (1’1,' + 3> On 01
LoYw +3 gn—u’ (Zi;:%) Ot
APPENDIX

On the Generation of the Group of the Lines of a Cubic Surface by Two Operations.

13.1. The group of symmetries of (PA); is simply isomorphic with the group of auto-
morphisms of the lines on a general cubic surface. For, there is a perfect correspondence
between the distances occurring among the vertices of (PA); and the intersections
occurring among the lines. This may easily be seen by comparing 9.43 with the
ordinary SCHLAFLI notation for the lines.

13.2. It is known* that the group is generated by the combination of every per-

mutation of the suffix-numbers
1,2,3,4,5,6

with any particular ““ bifid substitution ” such as

[135 . 246]

(defined in 9.44), and therefore, for example, by the three operations consisting of this
bifid substitution and the two cyclic permutations

(16), (123456).

* BURNSIDE, ¢ Proc. Lond. Math. Soc.,” vol. 10, p. 301 (1911).
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13.3. In 11.63, we found (in terms of a different notation) a generation of the group
by two operations. Itis of interest to translate this into the familiar ScHLAFLI notation.
Let ‘
{ H, = Vg, ,
o = (147258369)".
Then, since
? = (147258369),

it must be possible to generate the group by means of H, and .

13.4. On reverting to the SoHLAFLI notation, we find (by the correlation given in
11.6)—
H, = (16)

and .
o = XYZ,

where X, Y, Z are cyclic permutations, each of nine of the twenty-seven lines, namely,

X = (@sbgCaq €15016015 b10aCss),

Y = (Cas0sC14 DsbsCsg @2C45C25)s

Z = (bsCsCs5 1 0Cas C12D5016)-
13.5. To verify that the group is generated by the single operation o, of period 9,
and the transposition H ; it is sufficient to express, in terms of w and H,, five consecu-

tive transpositions (thus providing all permutations of the six suffix-numbers) and the

bifid substitution. Let
Hn — mnHo mQ——n

(the operations written to the left being those first performed). We then have

(23) — H,HH, (36) — H,, (61) = H,, (14) = H,, (45) = H,H,H,
and '
[135 . 246] = H,.

13.6. That o is actually an operation of the group may be directly verified. Let the
lines
3, Cass Da,

or any other three lines which occur in corresponding places in the three brackets
X, Y, Z, written down above, be respectively denoted by

& G

Then the three sets, each of nine lines, take the form

fwi, nwi, ot (1,7, k=0,1,2,3,4,5,6,7,8).
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If “ ~ ”” means “intersects,” (remembering that = 1) the rules of intersection are
as follows :—
Ew' ~no' ~ o
gmt ~ E.»(’)i+3 ~ &mi‘l'ﬁ,
nmj ~ .’)mj'l’lf ~ ’7](,0j+6,
cmk ~ ka+3 ~ Cﬁ)k+6,
£ Wt ~ gwi+1’
e ~ Nt
Lot ~ Lttt
ne' ~ Lot if A= 4 1 (mod. 9),
Co'~Eto't if pw= 4+ 2 (mod.9),
Eo'~ne't if v = 4 4 (mod. 9).
(The numbers +1, +2, +4 are the residues, modulo 9, of the various powers of 2, and
the notation can be further elaborated.) These rules, it is easy to see, give the 135
intersections, which are therefore unaffected by «w. So ® belongs to the group, as
required.
13.7. The operation » may be regarded as a product PQ, in which each of P, Q is of
period 2; Q being in fact
(16) (25) (34).
This is seen at once by applying to each of X, Y, Z (of which no two have a line in
common) the obvious decomposition of a cyclic permutation of period 9,
(123456789) = (17) (26) (35) (89) . (18) (27) (45) (36).
13.8. It is manifest that instead of » we may take any power of o, say »®, where n
is not a multiple of 3. Or we may take, instead of «, an operation obtained from it by
any permutation of the suffix-numbers 1, 2, 3, 4, 5, 6.

13.9. By 9.35, o o o .
[fgv . ghk] [ fgy . kK] [ fou . jhk] = (%)

Beside the equation
H, = [135 . 246],

we have also _
H, = [134 . 256),

H, = [345 . 126],
H, = [234 . 156],
H, = [346 . 125],
H, = [246 . 135].

Thus many identities, besides those utilised in 13.5, are obtainable ; as for instance

H1H4Hl == H7,
H3H5H3 = (12),
(H,H, ) = 1.

Also, from the equations in 13.5, it 1s clear that, instead of the particular transposition
(16), we might quite similarly have used (14) or (36).
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TaBrLE of Symbols,

together with equivalent symbols used by previous authors (see Preface).

“A.”—A. B. Storr and P. H. ScHOUTE.
“B.”—E. L. ErtE.
“C.”—D. M. Y. SOMMERVILLE.

(The method adopted is to go through the Latin alphabet, then the Greek alphabet,
and finally to take miscellaneous symbols, brackets, etec.)

Symbol. Reference. “A” “B.” “ar
a;, bi 9.4:3
ij> Ci] 933
e, 6.8 em—1 S (m 1)
I 1.6
Im—1,1 2.4
Gs—u,u 3.7
g-— 3.7
Yo, 6.2 HM,, oM,
hd,, 6.5 NH,, 1
hdy = atsh 6.9 N (O, T)
1, 8.9
(TIA),, 8.1
(TA)g = 1,, 11.8 Vi
(TA); = 2,, 11.8
{k 3.4 s D
[{%}, o) 4.4 Py Py
[{k}, {k'}] 44 (ks F)
» 3.4 ky
{key kgy oo T —1} 3.4 ks oo bpp—y
Nipg 7.33
N(—1)q 777, 7.92
[»pq] 7.6, 12.6
g 12.11
o 8.3
(PA),, 8.1
(PA)g = 2, 11.6 Voo
(PA); = 3u 11.5 56
(PA)S =4y 11.7 240
(PA)y = by 9.1, 10.1
Loy, rlin 2.7
9.1
S 9.2
S, 8.9
(SA),, 8.1
(SA)7 = 2 9.6 Vmo
(SA)y = 84 9.6
T 9.2, 10.8
Ty 9.2
Ty = Ty Tna 9.2 :
8()s () 5.1 cer(); cen() LC)s ()
bt ()5 tita () 5.9 es( ) cen—1ens1()
i 9.1
Uijk, Vijk 10.6
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Table of Symbols—(continued).

]

Symbol. J Reference, “A “B.” “er
i
(p—1—3~%g—1) 4.5
«, 3.53 S(m 1) S,
o, b 6.8
oy Oy 3.5 T,; C; T; G 33; 333
B 3.53 Cr,, Cr,,
Ba; B 3.5 0; Gy 0; Oy 34 334
Y 3.53 M,, M,
Ya} Y 35 ¢ 6, o0, 43 ; 433
gm 3.53 NM,; -1
X 4.9 NC 434
et 2.8, 2.9 K(u-+1,m—1)
Epg 4.73
- 2.8 Ry
em-—u, wu 2.8 w
A 4.71, 5.51
I, 11 (Po),,
Il, 1.2 (Po),
IT_4 1.3
I, I, 3.3
e 4.11
Il 7.1
T 3.61 Yot 1) He+1) He+1)
Q 10.12
140 7.45 Ve
{24}1 '242:5 Vaieo
(3,4, 8} = 1,8,=0y, 121 Co Co 343
{3,3,5}; {5, 3, 3} 3.5 Cooo 3 Ciza Cooo 3 Cigo 335 ; 533
(3,3, 4, 3) — A9, 6.6 N 3343
34,3 3) 3.5 NC,, 3433
ar, o7 5.7
+ (zy, T, ...) 3.6 [2y, @y, ...]: 2 21, 29y ...] %
("lm) 12 R, N,
("f:) 12 Ny
(. 12| N,
(;!n) 1.2 nNsr
! (—1’111)7 (—Slln) 1.3
(‘_]‘m—l 1 2.5 Vi1
(e—-u,,m_% " 2.6
("|m) L5
()X 1.7
] ( )n 5.2
()*+w 7.1
} (i) 9.2
lefgh . ijkT) 9.34
‘ [foh . k] 9.37
' 6.2
i
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Adjacent bounding figures ; 7.8.
Analysis Situs ; 1.2.

Angles ; 2.8.

Antiprism ; 6.8.

Archimedean solids ; pref., 1.9.
o,,-hedroid ; 6.8.

BAKER ; pref.

Bifid reflection ; 9.3.

,, Trotation; 11.5.

,,» substitution; 9.3, 11.5, 13.2.
Bitangents of plane quartic; 11.5.
Bounding figure ; 1.2.

Burnsipe ; 13.2.

CaviEY ; 9.3.

Centre of sphere-analogue ; 1.3.
) uniform polytope ; 1.8.

Circum-radius ; 2.7.

' of hy,; 6.4.
” ,, prism; 4.2.
» ,, truncation ; 5.4.

Circumseribing sphere-analogue ; 1.8.
Consecutive vertices ; 7-8.
Constituents of prism ; 4.1.
Construction of e, ; 6.9.

' prism ; 4.4
Content of prism ; 4.3.
Continued fraction ; 2.8.
Convex; 1.1.

Co-ordinates of «,,, ex,, ; 6.8.

’ bty s 6.2.

’s hd,,; 6.5.

PA),; 9.4, 10.2, 10.9.

PA),; 9.1, 10.1, 10.9.
» regular polytope ; 3.6.
» (SA), ; 9.6, 10.9.

» (SA),; 9.6, 10.3, 10.9.
» truncation ; 5.7.

» 1 (PA)g; 104,

» Lygs 2415 10.4, 10.9.

3 1ay, a3, 150, 25,5 10.9.

Cross polytope (B,); 3.5.
Cube (y5); 3.5, 6.2,

VOL. CCXXIX.—A

1A),, (IA), 5 9.8, 10.3.

(
(

”» (PA),; 9-3,10.2, 10.9.
(PA)g; 9.2,10.2, 10.9.
(

INDEX.

Cubic surface ; 10.2, 11.6, append.
Cuboctahedron (£,8,) ; 5.1, 6.6.
Degenerate polytope ; 1.5.
) prism ; 4.8.
Degree of regularity ; pref.
Diagram ; 2.8, 5.4.
Digon ; 6.2, 7.9.
Direct product of two symmetric groups ; 11.3.
,»  similarity ; 2.3.
Du Van; 10.9.
Edge; 1.2.
Edge length ; 1.7, 2.3.
) of reciprocated element ; 3.3.
s of truncation ; 5.4.
Elements ; 1.2.
" of a,h, ex,,; 6.8.

o e by 63.

’ » (TA),, (SA), ; 8.9.
5 5 M(=1)g 5 7.9.

’s » Mg 1.0, 7.7,

' v Oupg s 12.2.

) » (PA),; 8.3, 84, 85.
' ,» prism; 4.6.

» ,» regular polytope ; 3.8.
’ ,, truncation ; 5.2.
' » ILFe s 7.1,
s » lngs 2n1,; 8.5,
Erre 5 pref. ’
Enantiomorphism ; 2.3.
Equilateral triangle («5) ; 1.7.
Equivalent ; 1.6, 3.2, 7.5.
EuLEr’s theorem ;. 1.2, 3.7.
Even permutation ; 3.6.
Existence of regular polytopes ; 3.6.

» » IFe; 7.2,

ys » 12> 201 Mgy 5 9.5,
’s s> lgg, 3313 9.6.

» b 2505 9.8

Expanded o, ; 6.8, 6.9,

Group generated by two operations ; 11, append.
Group of symmetries ; 1.6.

of o, byt ; 11.2.

LR] ER

] IR ) [“p, “q] 5 11.3.
IR IR 3 Bm, 11.4.
') ) ) lLYm; 6.4:, 11.4.
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Group of Symmetries of (IA)g, (IA),, (SA)g; 11.8.

2 (IA)rm (SA)m’ 8'9'

» Mpgs 7.9, 11.1.

»» Onpg 3 12.2.

» (PA)g; 11.5,°11.6.

» (PA); 5 11.5.

ys (PA)g, (PA),; 11.7.

» (PA), ; 8.8.

,» prism ; 4.7.

,, regular polytope ; 3.7.

,, truncation ; 5.5.

3 Laas Laos 1sas 2515 2415 2515
11.8.

s Lggs 11.9.

Harn; 10.2.
Harmonic conjugate ; 1.3.
Hemi-y,,; 6.2.
» Op; 6.5
Hess ; pref.
Hypothetical element ; 1.3.
Tcosidodecahedron (¢{3, 5}); 6.6.
Improper regular polytope ; 7.9.
Indeterminate equations ; 8.7.
Indicatrix ; 2.1.
Induction; 1.1, 1.7, 3.1, 3.2, 3.3. 3.5, 5.2, 5.3,
6.2, 7.5, 7.8, 7.9.
Intersection of lines ; 13.1, 13.6.
Isohedral Archimedean ; 1.9.
‘ series ; 8.1.

Isosceles triangle ; 4.5.
KEPLER ; pref.
LeceNDRE ; 1.2. ‘
Measure polytope (y,,); 3.5.
MirieR ; 2.1.

Mixed Archimedean ; 1.9.
Neighbourhood of a vertex ; 2.1.
Normal piling ; 6.8.

Object of this paper; 7.3.
Octahedron (f,); 3.5, 7.5.
Operation ; 1.6, 6.2, 13.6.

Order; 1.6.

Packing of sphere-analogues ; 6.8.
Partition of sphere-analogue ; 7.9.
Permutation ; 3.6.

Poincare ; 1.2,

Poinsot : pref.

Pole and polar; 1.3.

Polygon, polyhedron, polytope ; 1.1.
Prime ; 1.3.
Prism (generalised) ; 4.1.
»»  (four-dimensional) ; 4.4.
Product of symmetries ; 3.2, 9.1, 9.4.
Pure Archimedean ; 1.9. »
. series ; 8.1.
Radii of polytope ; 2.7.
»  regular polytope ; 3.9.
Rational function ; 3.7.
Reciprocal of regular polytope ; 3.3, 3.5, 7.9.
' vertex figure ; 2.5.
Reciprocation ; 1.3, 1.5, 1.8.
Rectangular solid ; 4.4.
Reflection ; 1.6, 2.4, 9.2.
Regular polygon ; 1.7.
' polytope ; 3.1.
’ »»  (necessary conditions for exist-
ence) ; 3.5.
Rhombicuboctahedron ; 2.1.
Right prism ; 1.7, 4.4, 12.4.
Rotation ; 9.2.
SaLmon ; 9.3.
SCHLATLI ; pref.
functions ; 8.9.
notation for twenty-seven lines; 13.1,
13.3.
’ symbol (for regular polytope); 3.4, 5.3.
ScHOUTE ; pref.
Second vertex figure ; 2.6.
Sections of (PA), ; 9.6, 9.7, 9.8, 9.9., 10.3, 10.5.
Self-reciprocal ; 1.3, 1.5.
Semi-degenerate ; 4.9.
Semi-reciprocation ; 6.3, 7.3, 7.8, 9.5, 9.6.
Similarity ; 2.3.
Simple truncation ; 5.1.
Simplex (e,,) 5 3.5.
Snub solids ; 2.3, 2.4.
SOMMERVILLE ; pref.
Sphere-analogue ; 1.3, 6.8, 7.9.
Squared paper (35); 1.5, 3.5.
Star polytopes ; pref.
Srort, Mrs. A. BooLs ; pref.
Sub-Archimedean ; 1.9.
' series ; 8.1.
Super-Archimedean ; 1.9, 6.6.
Symmetry ; 1.6.

bRl

bRl
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Symmetry of (IA)g, (IA);; 9.8, 10.8.
. ,» (PA)g; 9.4, 10.8.
) ,» (PA),; 9.3, 10.8.
» » (PA)g; 9.2, 10.8.
» ,»» (PA)y; 9.1, 10.6, 10.7, 10.8.
s » (84);, (SA)g; 9.6.

. ,» semi-reciprocal polytopes ; 10.9.

' ,, truncation ; 5.3.

Table of polytopes ny, ; 12.7, 12.8.
” ’ Onpg 5 12.9.

Tetrahedron («;) ; 3.5, 6.2.
Transcendental function ; 3.7.
Transformation ; 9.4, 10.1, 11.6.
Translation ; 9.1.
Transposition ; 9.2, 13.4.
Truncation of &,k ; 6.8.

» WYy RO, 5 6.7,

. Npg 3 12.3.

» (PA)s ; 10.4.

» regular polytope ; 5.1, 7.3.

Truncation of truncation ; 5.9.
” uniform polytope ; 5.8.
’ I+l 7.2,
Type; 1.4,17.5,12.2.
Uniform polytope ; 1.7, 6.1.
uth vertex figure ; 2.6.
Vertex ; 1.2.
»» angle of prism ; 4.3,
» figure ; 2.1, 2.2.
' » ofa,h, ex,; 6.8
' wo o By 6.2,
' w9 RO, ; 6.5.
v n (1A, (PA),, (SA),; 82.

”» » ss Mipg; T.B.

” s prism; 4.5, 4.8.
» 5 s truncation ; 5.3.
2 i I tl'nqu 3 12.56.

bRl bRl ) H;‘-u; 7‘1'
Zones of (PA),; 104.




