THE COMPLETE ENUMERATION OF FINITE GROUPS OF
THE FORM R2= (R,R,)ki=1

H. S. M. CoxeTer*.

In this paper, we investigate the abstract group defined by the relationst
(2) (BiR)fi=1 (1<i<j<m),

in order to find what values of the integers k;; will make the group finite.

If some of the relations (2) are absent, we can suppose the corresponding
k’s to be infinite ; but this never happens when the group is finite. If any
k;=1, R, is merely an alternative name for R;; therefore we may suppose
that &; > 1.

It is convenient to represent the group by a graph of dots and links, as
in the Table at the end of this paper. The dots represent the generators.
The numbers written under certain links are values of k;. Whenever a
link is not so numbered, -we understand that k; = 3. Whenever two dots
are not (directly) linked, we understand that k; = 2.

The group is said to be irreducible or reducible according as its graph is
connected or disconnected. If reducible, it is the direct product of two
or more irreducible groups, represented by the connected pieces of the
graph.

With the help of certain lemmas, we shall prove the following

Tueoremi. The only irreducible finite groups of the form
R?= (R;R)=1

are )
(34, [3".4], [*, (3.3 [B43L [335)

r3n7 3,37 r3, 3,37 [333 31
|3!, 13,3, !3,3 L33 i
g1 .3 1 1z o 3 J

(The numbers occurring in these symbols are the values of those &'s that are

greater than 2. For details. see the Table.)

* Received 30 October, 1933; read 10 A\'U"e"ﬂ;er’ 11?33
t In compact form, (R R )% =1 (&P ] S b= T > .
e : 01 . We shal
! Cf. H. S. M. Coxeter, Annals of Math., 35 (1934), 501 (Theorem 9) e shall refer

to thig paper as D.g.g.r.
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LeEmMA 1. If the particular form
n
Tb,z?,
1
where by=bg=...=b,#b

(P=1, i=p+1p+2, . 4

38 invariant under a certain orthogonal substitution, then, 21’ * 18 likewige
wmvariant.

Since the substitution is orthogonal, E ;2 must be invariant, and so alg,

must the difference 2 (b;—by) 2,2

r+1

The equation b (b;—by)z2=0

P+l
represents a (p times degenerate) cone, whose “ vertex’ is the p-space

xp+1 =xp+2= e = xn = O-

Since the cone is invariant, this p-space must also be invariant.

Therefore the form ix,-"‘ will still be invariant when we replace all save
1

the first p 2’s by zero.

LeEMMA 2. Any linear transformation that leaves invariant the two

particular forms

(1) ?‘jy;‘e (e=1),
(2) Zc;y% (c;>0 for all j).
1
also leaves invariant Ty
1
If by. b,. .... b, are real non-vanishing numbers, such that the form

n -~ . . . 1
S b,z,2is invariant under a certain orthogonal substitution, then Lemmé

1
shows that the sums of the positive and negative terms are separatel
invariant. Therefore

LA

= 14=

rap¥’
is invariant. Since an orthogonal substitution is merely 2 linear b

ed b
formation that leaves 2 x;% invariant, Lemma 2 can now be deduc
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putting 165] = 3!
b', = 6;6;1,
x;=cty,.

Abbreviation. For ““ group generated by reflections’ we write g.g.T.

LEMMa 3.  Every finite g.g.r. in the generalized Minkowskian space®
§¢ T' 38 simply isomorphic with a g.g.r. in the Euclidean space S¥H,

Let the general point of §* 7" be (z,, z,, ..., z,,,), at distance

s+

Sgdt (ef =1, Ze

iZ; = 8—1)
1

J
from the origin.

It is well known that any finite linear group leaves invariant a positive
definite quadratic form, e.g. the sum of all transforms of Zz,2. This must
hold, in particular, for a finite group of congruent transformations in

§' T, By a suitable change of coordinates, under which the general point
becomes (y,, Yo, ... ¥,.,), at distance

v 2
~€Y;

from the (new) origin, the invariant form becomes (say)

s+

5.1‘. ¢;yit (c;>0).

3+t
By Lemma 2. we can now assert the invariance of T y;%.
1

E. We thus have a group of congruent transformations in S¢ 71", leaving

Bl . ; 5t §
A ¥;® invariant. By giving the variables y; a new geometrical interpreta-

b tion, we can regard the same algebraic substitutions as congruent
. - ‘;[ -
tramformatlons in S leaving X ¢, y,? invariant.
1

po'A reflection is characterized by the fact that it leaves invariant every
Ot whose coordinates satisfy a certain linear equation. Therefore,

 Teflect; .
Teflectiong remain reflections when we pass from 87" to S°*.
\

s *
 inthe H:S-M.Coxeter and J. A. Todd, Proc. Camb. Phil. Soc., 30 (1934), 1-3. The reflection
Prime 2a,x, = 0 is the transformation

‘h x’=z_2¢‘a'A ([:l 9 erep 3+t)
ki A‘Ea,.rj/':.jal:_ ; ' T ’
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Lemma 4. Every finite group of the form RE= (R, R ki _

generated by reflections in the bounding primes of a spherical simp) - can b

ex.
We know* that there exist, in some generalized Minkowskian
S* T¢ (34t <m), m+1 points 4°, AL, ..., A™, such that “Pacs

AOAl:l (l <i<m)’
A" A = 2 cos (77/2’6.',') (1< <J Sm).

Let a' (1 <i <<m) denote the prime, through 4‘, perpendicular to 40 4
Then it is easily seen that a/, o’ are inclined at an angle m/k;. The primes
@' cut off a certain region around 4°. (If closed, this region is a polytope
and A° is its.in-centre.) Reflection in any prime a' gives a new region,
congruentt to the first. Reflection in any other bounding prime of the new’
region gives a third region; and soon. Since all the dihedral angles are of
the form =/k, the regions will fit together without overlapping, and there
will be no interstices. In fact, the region bounded by the primes a'is a
fundamental region for the group generated by the reflections in these primes.

Let R, denote the reflection in the prime a'. The relations (1) and (2)
evidently hold. The R’s, so defined, may perhaps satisfy other relations,
not deducible from these§. But we can assert that the g.g.r. is simply
isomorphic either with the abstract group defined by (1) and (2) or with
a factor group thereof. Hence, if the abstract group is finite, the g.g.r.
is a fortiori finite.

By Lemma 3, the g.g.r. occurs in Euclidean space. By Theorem 8 of
Discrete groups generated by reflections ., it is simply isomorphic with the
whole abstract group. Since the origin is invariant{], the group can be
regarded as operating in spherical space. By Lemma 4.7 of the paper
just cited**, if the number of dimensions is taken as small as possible.
the spherical fundamental region is a simplex.

Our theorem now follows from the enumeration of Gro
fzmdamental regions are simplexestt.

ups whose

L
* (Coxeter and Todd, loc. cit., 1.
+ Or, rather, enantiomorphous.
+ ¢f. D.g.g.r., 596. e only .
§ The argument used in D.g.g.r. shows that such extra rclations will 8=)pL onnecté!
ply-¢

the part of space filled by the fundamental region and its transforms is multi
| D.g.g.r-. 599. formatio™
¢ In Euclidean (or Minkowskian) space, every finite group of congl'“ent.z(,runs
Jeaves invariant the centroid of all the transforms of a point of general position:
*+ D.ggr., 597.
+t Journal London Math. Soc., 6 (1931), 132-134. For a fuller 8
London Math. Soc. (2), 3% (1932), 144-151. In both these papers B i
penultimate line on p. 132; the latter, the last line on p. 136), @i should b€
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515 OF IRREDUCIBLE FINITE GROUPS OF THE FORM R?=(B.R)Yi=1.

Symbol Graph Order*
£ —(3"'11 (m2>1) (m+1)!
[3-", 4) m=22) ' e e ——e— 2*m!
k13 (k= 5) —r 2k
[3. 5]’ ———e 120
[3, 4, 3] . —— 1152
[3, 3, 5] ——— 14400
"3.-3 lr_'
3 (m=4) ———a— coe e B Y
| 3
3,379
33 51840
[ 3
3,33
[3, 3 :l 2903040
3
3,333
53 606720600
L3

Trinity College,
Cambridge.

can s 706 London Math. Soc. (2), 34

(1932), 160, 1539. All the orders save the last three

&.'b'd‘dllood from the theory of regular polytopes. For the rest, see Phil. Trans. Royal

(A), 229 (1030), 381-384.

%M. Symmetric group ofdow m-+1. [ ]is the group of order 2; its graph is g

$ The ar @ the number of dots in the gra
group of order 2L,

¥ The ox

I[:]i'"“-uneu[s,s].

BRoup of the twenty.seven lines on the cubic surface.

tended fuccBd

ph, i.c. the number of gencrators,
(3] and 4] have already occurred above,



