Configurations of Points and Lines

Branko Griinbaum

1. Introduction

Configurations — as the word is interpreted throughout this paper — are simple
enough that in their geometric aspect could be explained to any third-grader, but
easily lead to problems that are beyond the reach of all presently available tools.
While one could reasonably place configurations within the purview of elementary
geometry, they could also be interpreted as belonging to algebraic geometry, or
combinatorics, or topology. Despite — or possibly because — the simplicity of the
concept, over the years it suffered from many instances of confusion and downright
errors. Even if this fact may be understood as arising from misinterpretation of the
nature of configurations, it is surprising that the problematic statements were in
many cases not recognized and corrected for nearly a century.

Configurations of points and lines were first defined by Reye [R1] some 125
years ago (see also [R2]). Many specific configurations have been described and
studied before that — but without a framework into which they could fit. Config-
urations enjoyed considerable popularity during the last two decades of the nine-
teenth century, only to be relegated to a mathematical limbo afterwards. Neither
the publication of the only serious text on configurations by Levi [L2] in 1929,
nor the attempt by Hilbert and Cohn-Vossen [H1] in the 1930’s, generated much
activity. In the second half of the twentieth century there was a slight renewal of
interest, in particular through Coxeter’s frequently quoted paper [C3]. This, and
other papers of Coxeter’s on configurations make the topic appear appropriate for
the present volume, as it was for the conference that led to it.

During the last two decades, research on configurations became energized by

several factors.

e Re-examination of the nineteenth century papers revealed that many of
the basic results that have been accepted for a century or more are, in
fact. not valid as stated. Details of this aspect will be presented in Section

3. _ .
o Novel ideas made it possible to study various kinds of configurations that

were beyond the reach of earlier investigations.
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These aspects will be discussed in the remaining parts of- this survey. A'l arge
number of intriguing open problems will be presented, along with precxs:e definitiong
and statements of results, and with many references to the scattereq literature.

Following general definitions in Section 2, Sections 3 and 4 de'al with the hi-st ory
of the early papers on configurations. These sections describe in some detail the
errors of these basic papers. It seems appropriate to 4well on the shortcomings
as a warning: Very capable people were capable of making mistakes, and the lack
of clarity and precision causing them has been known to occur more recently as
well. In later sections we give brief explanations of recent developments in the
theory of configurations. Through this it becomes apparent that as soon as the
right questions are asked, there is no more room for dismissal of configurations as

trivial geometry.

2. Definitions and notation

DEFINITION 2.1. A configuration C is a family of points (or vertices) and lines
such that for some positive integers p, ¢, n, k each of the p points is incident with
g of the n lines, and each of these lines is incident with k of the points. Such a
configuration C is denoted (pg,nx) or, if p = n and hence ¢ = k, more simply by
(nk). If the parameters p and n are not relevant, a configuration (pg, n) is said to
be of type (g, k].

Several explanations and clarifications should help understand the scope of this
definition. To begin with, the points and lines are understood to be part of some
space in which these concepts, and incidence, are meaningful. Our main settings are
the real projective plane and the real Euclidean plane E?; this is the meaning unless
some other interpretation is specifically mentioned. We shall invariably interpret
the projective plane as the ertended Euclidean plane E**, that is, E2 augmented
by the “ideal points”, also called “points at infinity”. For geometric configurations
“point” and “line” mean a point of the plane and a straight line, respectively.
“Incidence” is defined as the point belonging to the line; however, we allow that
some points of the configuration lie on a line with which they are not considered
to be incident. To avoid trivialities we shall always assume that not all points of a
geometric configuration are collinear.

In a different interpretation of Definition 2.1 we obtain combinatorial configura-
tions: here “points” are understood as any symbols, “lines” as sets of “points”, and
“incidence” as “point is an element of a line”. Thus, combinatorial configurations
are special incidence structures. Combinatorial configurations are often specified
by a configuration table, in which columns represent points incident with one line.
In our considerations we insist that in a combinatorial configuration two distinct
points are incident with at most one line; this implies that two distinct lines are
incident with at most one point.

Tlu:_ carliu.s';t mcqtiun of the fact that for every choice of ¢ and k there exist
geometric configurations of type [g, k] seems to be in the paper of Kantor (K2]
published in 1879. H?s construction is quite complicated. As is easily seen, the
existence of such configurations is more easily established by considering a block
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FIGURE 1. The combinatorial configuration (163) indicated by this
diagram has a representation as shown, but it admits no realization

since by the theorem of Pappus the point B, necessarily lies on the
line L.

of size k9 of points in the integer lattice of the ¢g-dimensional Euclidean space, and
the lines through them parallel to the coordinate axes.

DEFINITION 2.2. Configurations C; and Cs are said to be isomorphic if there
is a bijection between their points, and a bijection between their lines, which pre-
serve incidences. If there are incidence-preserving bijections between points of one
configuration and lines of the other, the configurations are said to be dual to each
other. A configuration is selfdual if it is isomorphic to its dual.

Clearly, every geometric configuration is isomorphic to a combinatorial one;
however, as we shall see, the converse is not valid.

Discussions of the relation between geometric configurations and combinatorial
ones requires a differentiation which seems largely absent in the literature. A geo-
metric configuration C is a realization of the underlying combinatorial configuration
if a point and a line of C are incident if and only if their combinatorial counterparts
are incident. In contrast, C is a representation of the underlying combinatorial
configuration provided a point and a line of C are incident whenever their combina-
torial counterparts are incident, but points may belong to other lines as well. The
essential distinction between representation and realization is illustrated by Figure
1. Since every combinatorial configuration could be represented by a collinear set
of points, by convention representations by such configurations and their duals are
excluded from all following considerations and statements.

Levi graphs of configurations (and more general incidence structures) are one
tool that simplifies discussions and leads to parsimonious ways of defining concepts.
They were introduced by Levi [L3] in 1942, but were brought to the attention of a
wider audience only by the path-breaking paper of Coxeter [C3]. The Levi graph
L(C) of a configuration C is a bipartite graph in which the vertices of one part
correspond to the points of C, and the vertices of the other part to the lines of C;
two vertices of L(C) are connected by an edge if and only if the corresponding line
and point are incident. As an illustration, in Figure 2 is shown the Levi graph of the
configuration of Figure 1. The earlier “Menger graphs”™ of configurations discussed
by Coxeter [C3, C2] are still used sometimes, but they are much less useful.

The Levi graphs of combinatorial configurations are easily characterized. For
configurations (n3) these are 3-valent bipartite graphs of girth (length of shortest
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FIGURE 2. The Levi graph of the (163) configuration from Figure
1. (Adapted from the Levi graphs of Pappus and Fano configura-
tions given by Coxeter [C1].)

circuit) at least 6, and similarly for other classes of combinatorial configurations.
The graph-theoretic connection makes it redundant to dwell at length on definitions
of concepts such as isomorphism or duality, connected or k-connected configuration,
Hamiltonian circuit in a configuration, or the girth of a configuration.

Another tool used in the study of configurations are incidence matrices, and
various ways of representing them; see, for example, (L2, B3].

Neither of these tools leads to a solution of a central problem: Which combi-
natorial configurations admit representations or realizations in the (Euclidean or
projective) plane. In Section 3 we shall mention coordinatization, one approach
that can be used to such an effect, but which has to be applied to individual con-
figurations and is highly laborious unless the configurations are very small.

Symmetry is a central concept for the newer development of configurations. By
this we understand an isometric map of the plane onto itself that maps a configu-
ration onto itself. All symmetries of a configuration form its symmetry group. A
geometric configuration is said to be of symmetry type [hi, hy] provided its points
form h; orbits, and its lines hy orbits under its symmetry group. We shall also
say that such a configuration is [hy, hy]-astral. Clearly, if a configuration of type
[q, k] is [h1, ho]-astral, then hy > (k +1)/2 and hy > (g +1)/2. If hy and hy have
these minimal values we shall simplify the language and say that the configuration
is astral. In cases where hy = hy = h, we shall say that the configuration is h-astral.
A variant of this term was introduced in [G10] along with a variety of examples.
Here we shall see many examples in Sections 5, 6, and 7.

3. Early results and errors, and their subsequent development

Most of the early works on configurations deal with configurations (n3), and
in particular, with the enumeration of isomorphism classes for certain values of
n. One of the startling facts about these investigations is how hard it is to decide
nowadays whether they discuss combinatorial configurations or geometric ones, and
in the latter case, whether they consider configurations in planes or spaces over the
reals, or over complex numbers. All these possibilities were often mixed up — for
example, in the writings of Kantor, Schonflies, Schroeter, Steinitg and others listed
in the references. As we shall see soon, contributing to the confusion is the fact
that results valid for some special cases were deemed to have general validity.
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(93) (93), (93)3

FIGURE 3. The three configurations (93). The notation is the one
used by [H1]. It is not clear who first devised the realization with
3-fold rotational symmetry of these configurations; the ascription
by Steinitz ([S8, p. 489], [S10, p. 158]) to a 1910 paper by H. A.
Schwarz is mistaken.

Other investigations concerned the possibility of geometric realizations of com-
binatorial configurations, and of the possibilities of constructing all combinatorial
configurations (n3). It is unsettling to realize how many errors, small and large,
were committed in these investigations. It is even more surprising that some of the
errors remained undetected for a century.

3.1. The first enumeration of the isomorphism classes of configurations (83)
and (93) was carried out by Kantor [K3]. Kantor explains that the unique con-
figuration (83) can be constructed by starting with a simple quadrangle, to which
another quadrangle is inscribed in such a way that it is also circumscribed to the
starting one. The mystery of how this can be done is removed later in the paper
when he mentions, in passing, that if the vertices of the first quadrangle are in
the real plane, then the other four vertices are imaginary. This was in a different
context shown much earlier, by Mébius [M3]. In the review of [K3] by Schubert
5] the description italicized above of the configuration is repeated, but there is
) x'ncntion of the reality or otherwise of that configuration. A proof of the non-
realizability of the configuration (83) was given by Mobius [M3] (see Coxeter [C3
Pp. 122, 131]), Levi [L2, p. 99], and by Bokowski and Sturmfels [B9, p. 35]. More;
111f0rpmtion concerning the configuration (83), its realizability in various planes
f'lnd Its symmetries, together with historical remarks and references can be found
n Corxeter’S papers [C3, C5].
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FIGURE 4. Facsimile of one of the diagrams of [K3|, purporting
to show a (103) configuration. This configuration has been shown
by Schroeter [S4] to be not realizable in the Euclidean plane. In
the diagram, the line 9-10-6 is clearly not straight.

this combinatorial configuration is not isomorphic to any geometric configuration
in either the real or the complex plane.

A later paper of Kantor [K4] is devoted to the enumeration of (isomorphism
classes) of configurations (103). The enumeration is based on a mixture of combi-
natorial and geometric arguments, and is quite opaque. One of its results — that
there are ten different classes of combinatorial configurations (103) — is correct,
although it relies on an invalid argument. This argument, made without any jus-
tification, asserts that two configurations (n3) are isomorphic if and only if their
families of remainder figures contain the same figures in the same numbers. (The
remainder figure of a point P in a configuration consists of those points of the con-
figuration that are not on any configuration line through P, and of configuration
lines containing two or more of these points.) This statement was also repeated in
the review of [K4] by Rodenberg [R4], although it is false in this generality; while
true for n < 10, already for n = 11 there are counterexamples. Independent enu-
merations of the combinatorial configurations (103) were carried out by Martinetti
[M1], Schroeter [S4], and more recently by many others (for example, [S11, B4])-
The enumeration by Zacharias (Z2, Z3] is not correct, nor is the report on it by
Togliati [T1].

The other claim of [Kd], that each of the ten classes of combinatorial config-
urations (103) is realizable as a geometric configuration of points and lines in the
real plane — is invalid. Kantor claims to derive his assertion using a statement
credited to Johann Benedict Listing (but without any reference) to the effect that
— in present-day terminology — every combinatorial (n3) configuration can be
interpreted as having a Hamiltonian circuit. (Kantor speaks of an n-gon inscribe
and circumscribed to itself.) But the assertion attributed to Listing (which I 1av®
been unable to locate in any work of Listing’s) is invalid. not only in the state
generality but even under quite stringent restrictions. (\,Ne shall discuss Hamil
tonian circuits in more detail in Sections 3 and 4.) Kantor supports his claim =
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FIGURE 5. Schroeter’s construction in [S4] of one of the (103) configurations.

realizability by diagrams, purporting to show the corresponding ten geometric con-
figurations. However, several of the diagrams do not actually show all intersection
points, and some are incorrect. A facsimile of Kantor’s purported realization of one
of these configurations is reproduced in Figure 4; as clearly visible, the line 6,9,10 is
not straight. But beyond inaccuracies of the diagrams, the important fact is that,
as proved by Schroeter [S4], one of the ten combinatorial configurations cannot be
realized by points and lines in the real plane; this configuration is the one shown in
Figure 4. (Later investigations by Laufer [L1] and Bokowski-Sturmfels [B9] showed
that this configuration cannot be realized by points and lines in any plane over a
field, hence, in particular, not even in the complex plane.) In continuation of his
paper [S4] Schroeter shows that the other nine combinatorial configurations (103)
can be geometrically realized in the real plane. An example of his mode of con-
struction is shown in Figure 5. In fact, the constructions Schroeter presents show
that they are realizable in the rational plane as well. This has been confirmed using
more modern methods by Bokowski-Sturmfels [B9].

. il:: i;l]i:tin]li I‘Egsat( l(lzlyflll\(; c01111binatoriai1 conlﬁgura.tion (ng) San be rea}ized.by points
the preliminaries to his eIZiilgrra:Pmp F b zne) li'repealtf b}I,—IIVIartmettl [Mll’ n
ment (which is l‘el)eatca in the revli?al:v(;f ([:Kjlll]ggraLlor}s ( dB)I_., i Fhat state-
claim that he enumerates eométric fi t}', Orlahaj;l I 'ampe ) " order to
only with combinatorial ox%eé Wh tcl(;}l %}lrattl'orflis SV ?e lllS Ao o el
Natorial confipurati . ' fm af inett] finds s that there are 31 combi-
[Ml]‘) i g, ations (1.13). (\’\e shall }eturn soon to another part of his paper
Wi (liﬁ‘(‘::lx:tlon?lt1(-01;ﬁg:11-f1t19115 were m_de}.)endently found by Daublebsky [D1)
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p‘\. St b ‘uclidean plane of the 31 configurations (113) was provided
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The configurations (123) have their own somewhat convoluted history. T
enumeration of the combinatorial configurations (123) was carried out by Daub]ep,
sky [D2] in 1895, using the method of remainder figures. He found that only 1§
different remainder figures could possibly occur in such a configuration, Throy h
various arguments (described only in general terms) Daublebsky arriveq at tie
conclusion that these remainder figures could be combined to yield many hundreqs
of configurations (123). Then he ... drew a schematic diagram of each configy.
ration on a separate piece of paper ...” and determined for each the “remaindey
system”, that is, a list of the different remainder figures occurring in the configy.
ration. Finally, configurations with the same remainder system were investigated
to see whether they are isomorphic. This turned out to be the case in most —
but not all — cases. Daublebsky presented the resulting 228 combinatorial config-
urations by their configurations tables (these take 23 pages!!!). He also gave some
other data and provided drawings for geometric realizations of a few of the con-
figurations. In a later paper (D3], Daublebsky gave results of his investigations of
the groups of automorphisms of each of the 228 combinatorial configurations (123).
The first independent enumeration of the combinatorial (123) configurations was
carried out only in 1990, by Gropp [G2]. It showed that Daublebski missed one, so
that there are in fact 229 such configurations. (I assume that Gropp compared his
list with that of Daublebsky, and that the one additional configuration is the only
discrepancy between the two lists. A statement in [G1] can be interpreted this
way.) Gropp communicated to me the configuration table of this configuration,
and it can be read off from the illustration in [D4] and [G6]. As with configu-
rations (113), the 229 combinatorial configurations (123) have been independently
enumerated (by two different algorithms) in [B4].

The only published proof that all 228 combinatorial configurations (123) found
by Daublebsky are geometrically realizable was given only recently, by Sturmfels
and White [S12, S13]. Sturmfels and White also proved that all these (123) con-
figurations are realizable in the rational plane. In a private communication, B.
Sturmfels showed that the “new” combinatorial configuration found by Gropp is
also geometrically realizable, even in the rational plane; a diagram is shown in
Dorwart and Griinbaum [D4].

The numbers of different combinatorial configurations (n3) have been deter-
mined for n < 14 by Gropp [G2], and for n < 18 by [B4]. See Table 1, which
includes also the number for n = 19 computed by the same method. There seems
to be no estimate of the asymptotic growth of the number of types of combinatorial
configurations (n3) as n goes to infinity. .

In contrast to the above discussion, for n > 13 there is no general information
available concerning the possible realizations or representations of the configura-
tions (n3) as geometric configurations of points and lines in the Euclidean plane-
The only known connected configuration (n3) with n > 10 which cannot be SO
represented is one of Kantor’s (103) configurations, discussed above and indif:ateg
by the incorrect drawing in Figure 4. This observation and the results mentione
earlier lead to the conjectures:

he ﬁrSt

. . ithn 2
CONJECTURE 3.1, Every connected combinatorial configuration (n3) with ™ =
11 can be represented by points and lines in the real FEuclidean plane.
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TABLE 1. The number of non-isomorphic combinatorial configu-
rations (n3), from [B4] and [B7].

Number of all (n3) configurations

n Selfdual (n3) configurations
7 1 1

8 1 1

9 3 3

10 10 10

11 31 25

12 229 95

13 2,036 365

14 21,399 1,432

15 245,342 5,799

16 3,004,881 24,092

17 38,904,499 102,413

18 530,452,205 445,363

19 7,640,941,062 1,991,320

CONJECTURE 3.2. Every configuration (n3) that can be represented or realized
by points and lines in the real plane can also be represented or realized in the rational
plane.

It should be stressed that the distinction between representability and realiz-
ability of a configuration (n3) is very important. In Figure 1 we indicated by a
diagram a representation of a combinatorial configuration (163). This configura-
tion (and many others) cannot be realized since, by the theorem of Pappus, the
line L must pass through the point P with which it is not incident. However, all
known examples of configurations (n3) that are representable but not realizable are
2-connected at most. Hence the following

CONJECTURE 3.3. Every 3-connected configuration (n3) that is representable
in the real plane is realizable in the plane as well.

As a sidelight to these conjectures it is appropriate to mention that the dis-
tinction between representation and realization of a configuration was very slow
to be noted. For example, Schroeter [S4] describes very carefully the construc-
tion of the nine realizable configurations (103). He starts each construction by
choosing a certain number of arbitrary points, and adding in some cases additional
points on already constructed lines — but without noticing that some choices lead
to representations that are not realizations. This is illustrated in Figures 5 and
6. Analogously, Steinitz in his fundamental theorem, which we shall discuss soon,
claims to establish realizations of the configurations, or of near-configurations in
which one incidence is not satisfied, — although this result is invalid. It becomes
valid if representations are considered instead of realizations. However, there is a
basic difference between the shortcomings of the Schroeter constructions and the
Steinitz claim: The former can be made correct if assuming that the construction
start with generic choices of points and lines, while no such correction can salvage
Steinitz’s assertion.

~An error first committed by Schonflies [S1] is the claim that all combinato-
rial configurations (n3) that are vertex-transitive and contain triangles are selfdual
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Op

FIGURE 6. The same construction as in Figure 5 yields only a
representation, since the point 1 lies on line 8-0-9.

FIGURE 7. The Martinetti transformation.

(“sich selbst reciprok”). In [S2] Schonflies states that this is a consequence of the
(true) fact that if a configuration contains triplets of points that form triangles,
then it must contain triplets of lines that form triangles — but this deduction is
invalid; see Steinitz [S9, p. 307-309]. A related error is the frequently made defi-
nition by which configurations with the same number of points and lines are called
“selfdual”. As visible from Table 1, this happens to be true for configurations (ng)
with n < 10. However, already for n = 11 only 25 of the 31 configurations are
selfdual; the fraction of self-dual configurations decreases rapidly with growing n
— for n = 16 they form less than 1% of all configurations. This error of confusion
was, unfortunately, committed also by Coxeter in [C3], and occurs still in some
publications.

Another type of misleading terminology is still in wide use: Many authors
(too many to list) call “symmetric” all configurations (or more general incidence
structures) with the same number of points as lines. This is clearly inappropriate,
since most of these objects admit no automorphisms or any other kind of incidence-
preserving “symmetries”. It would seem that “balanced’ would be a far better
designation — but if the use of this term is opposed because it occurs in the
context of block designs, “equinumerous” might work as it does convey the meaning
without implying properties that do not exist, and without impinging on other

topics. With very few exceptions, in this paper we shall consider only equinumerous
configurations.
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FIGURE 8. The “module” used in the Martinetti construction.
Only the ten solid dots and the ten solid lines form one module.

3.2. A different direction in the studies of configurations (n3) was initiated
by Martinetti [M1]. Speaking of combinatorial configurations but using geometric
language, he describes a simple operation which may be applied to a configuration
(n3) to obtain a configuration ((n + 1)3). The operation is schematically indicated
in Figure 7. It replaces two “parallel” lines (that is, lines with no common points)
such that corresponding pairs of points (AD, BE, C'F) are not contained in any line
of the configuration, by three lines that pass through these three pairs and a new
point O. If a configuration C can be obtained from a smaller one by this operation,
Martinetti calls C reducible; otherwise it is irreducible. Martinetti’s main result is
the claim that for each n there are very few irreducible (n3) configurations, and he
gives a complete description of all irreducible configurations. More precisely:

Theorem claimed by Martinetti (1887) [M1] A connected (n3) combi-
natorial configuration is irreducible if and only if it is one of the following:

(i) Forn > 17, the cyclic configuration C3(n) with lines [j,7 + 1,5 + 3] (mod
n) for0<j<n-1;
(ii) n = 10m for some m > 1, and the configuration is the one described below
and denoted M(m); M(1) is the Desargues configuration (103), .
(iii) n =9, and the configuration is the Pappus configuration (93),-
(iv) n = 10, and the configuration is (103), or (103)g in the list of (103)
configurations of Schroeter [S4].

) .I\Iurtinetti’s combinatorial configuration M(m) can best be explained as con-
;‘61111g of m copies of the family of the ten points indicated by solid dots in Figure
ii an(lf the ten solid lines shown there. The jth copy is joined to the (7 + 1)st by
dentifyine 4" " W ] ) . : s o

- ,_”l;lg a;°  BY, C%" with Aj 1, Bjt1, Cj41, respectively; all subscripts taken
i Mill:tinotti's proof is, not surprisingly, involved and long. The result was quoted
18()_11(1‘1:1;1011(-(1 many times over the next century; see, for example, Steinitz (S8, pp.
I l(‘;?‘].' [S10, pp. 153 -154], Gropp [G1, G2, G6, G8|, Carstens et al. [C1).
Pl'()u-f ”fl ¢ notes for my configurations courses in 1999 and 2002 I wrote about the

of Martinetti’s theorem the following:

I have not checked the details, and T do not know it as a fact
t{““ anybody has. The statement has been accepted as true for
l Qe > .

1ese 115 years, and it may well be true. On the other hand,
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Daublebski’s enumeration of the (123) configurations was also
considered true for a comparable length of time ...
As it turned out, my suspicion has been vindicate_d by',the. Ph.D.. thesis. of
M. Boben [B5]; see also [B6]. He showed that Ma.rtmettl' s list of irreducible
configurations is incomplete. The error in Martinetti’s proof arls'es as follovs./s. When
constructing M(m), he attaches m copies of the “module” in 1'7‘1gur'e 8 as 1n3/1catzed
above; the mth copy is attached to the first “straight”, by identifying A with
Ay, and similarly for the B’s and C’s, thus obtaining M(m). However, as shown
by Boben, that attachment can also be done in “twisted” ways, two of which yield
irreducible configurations which we may denote by M*(m) and M**(m). These are
obtained by identifying A’ with Cy, B! with By, and C” with A; for the former,
and Ay’ with Cy, B! with A, and CJ" with B for the latter. A separate argument
shows that the three resulting configurations are non-isomorphic for every m. With
this modification, Boben’s corrected version of Martinetti’s result replaces parts (ii)
and (iv) by the following:
(ii) » = 10m for some m > 1, and the configuration is one of M(m), M*(m)
or M**(m) described above. Form = 1 these are the configurations (103),,
(103)2 and (103)6.

3.3. A very interesting situation concerns Steinitz’s Ph.D. thesis [S6]. In it,
Steinitz proves a remarkable result, in an inspired way. However, he does not prove
what he believes and asserts to have proved, but a considerably weaker result. It is
hard to understand how Steinitz — a profound and very painstaking researcher —
could make such a logical error; it is even harder to understand that the error was
not detected for more than a century, despite the frequent mentions of Steinitz’s
theorem in the literature. The error came to light only in the presentation of T.
Pisanski at the Ein Gev conference in 2000 [P2].

THEOREM 3.4 (Steinitz [S6] (in modern and correct formulation)). For every
connected combinatorial configuration (n3) and every choice of one line (or of one
point), there is a selection of distinct points and lines in the plane which represent

all the incidences of the configuration except possibly the incidences of the chosen
line (or the chosen point).

Steinitz claimed to have proved the above assertion with “realize” instead of
“represent”. As stated explicitly in [S9)], [S8, p. 485], or [S10, p. 150], Steinitz
considers as geometric configurations only those that contain no incidences besides
the ones of the combinatorial configuration. The fajlure of the realization claim
follows at once from considerations of point Fi (or line M ) in Figure 1; the point

B; has to be on line L with which it is not incident regardless of the incidences or
nonincidences of Fy (or M),

I feel humbled to realize that although T found ¢
Figure 1 long ago (see [D4]), and although I lectured o
times, I did not detect his error.

Steinitz’s proof is remarkable enough to deserve gz b
combinatorial part, and a geometric one.

The centerpiece of the combinatoria] p

he configuration shown in
n Steinitz’s theorem several

rief description. It has a

art is the claim:
THEOREM 3.5 (Steinitz (S6]). Every

combinatorial ¢ ) its
an orderly configuration table. onfiguration (ny) admi
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Here a configuration table for an (ny) configuration is said to be orderly if every
-ow of the table contains all the points (hence each precisely once).

A statement that Theorem 3.5 holds for k = 3 (without any justification or hint
of proof) appears in Martinetti [M1]. Most later authors do not mention the result
_ much less its proof — although many writers seem to accept it as self-evident.
On the other hand, the statement in Page and Dorwart [P1] regarding this result is
incorrect, as are the consequences deduced by them from the erroneous statement.
As pointed out by Gropp [G7], Theorem 3.5 implies the later result known as
Konig’s theorem [K5], that every bipartite graph of constant valence contains a
factor of degree 1.

Having established that any given (n3) configuration has an orderly configura-
tion table, after a few additional steps, Steinitz arrives at the result that, having
chosen a point or a line, it is possible to arrange all elements (that is, points and
lines) of the combinatorial configuration in such a sequence that each is incident
with at most two elements preceding it in the sequence, the only exception being the
chosen element, which is the last in the listing. Now, in the geometric part, since
an clement incident with at most two previous ones can obviously be constructed,
it follows that the combinatorial configuration can be represented by points and
straight lines that satisfy all the incidences, except those of the last line. Clearly,
if the last three points are not incident with a (straight) line, they can always be
made incident with a curve of degree 2. This is the result of Theorem 3.4.

Some additional comments seem appropriate.

First, from the proof it is obvious that the whole construction could be carried
out in the rational plane, so that all the points and lines (including the last one, if
it exists), are rational.

Second, Steinitz devotes more than half the dissertation [S6] (24 pages) to a
consideration of ways in which one could guarantee that the final step in the above
proof can be made using a straight line instead of a curve of degree 2. While this
might be another interesting result, I have not been able to follow the exposition.
(In fact, T know of nobody who claims to have understood and verified this part
of [S6].) The opaqueness of the exposition can best be seen from the last two
sentences of Steinitz’s introduction to this part of the work (see [S6, p. 22]):

... Without any particular assumptions about the configurations,

a method will be presented below following which one can reach

a linear presentation. However, for each configuration to which

we want to apply this method, an additional investigation is

necessary since the method becomes illusory in certain cases.

[My translation]
_ In'mentioning [S6] in the survey [S8, p. 490], Steinitz is equally uninformative.
Stating that his method is an extension of Schroeter’s approach in [S3, S4], he ends
the explanation by stating:

Schroeter’s method can be generalized so that it is applicable to

most configurations (ng).
N tlIl seems that the “method of Schrocter”. is roo'Fed in arguments due to Mobius

1¢ carly part of the nineteenth century, in particular in (M3].
uu(l(\El.]i,r(l‘ - tll(?. proof is valid, and somgbody were to m.ake the exposition
l)l'()(;['bt(}ll(l;ll)lc — this would prove our Conject..ure. 3.1, but lt‘: would not be a
of the analogue of Conjecture 3.1 for realizations, as claimed by Steinitz.
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FIGURE 9. The seemingly first published graphical presentation of
a polycyelic configuration. specifically a d-cyclic (203) configura-
tion. (From Visconti [V1].) There are four pentagons: 1,2, 3 4, 5;
6,8,10,7,9; 11,14.12,15,13. and 16,19, 17,20,18. Each is in-
scribed in the preceding one, and the first one in the last.

Indeed, we know from examples such as the one in Figure 1 that some representable
configurations are not realizable, hence Conjecture 3.1 cannot be generally valid for
realization.

3.4. Interpretations of configurations as polygons or families of polygons go
back to the very beginning of the study of configurations (n3). The connection
arises by considering segments of the lines of a configuration determined by the
points of that line; such segments can be used to form one or more circuits —
polygons. Utilizing the old and ever-present confusion between lines and segments,
it is customary to say that one polygon (in the configuration) is inseribed into
another polygon if the vertices of the former are configuration points (other than
the endpoints) of the lines determined by the sides of the latter. The latter is also
said to be circumscribed about the former. To clarify this description, consider
Figure 9. As specified in the caption, the lines there form four pentagons, each
inscribed into another and circumscribed about g third.

Such families of mutually ilLs'cribod/vir('umscril;o(] polygons have been diseussed
very frequently for example, by Kantor K3, K4, Martinetti [MI] ’S(‘h('i(‘nﬂi(‘s
[S1, S2], Steinitz [S9], and many others. Ip some cases the diS(‘lmsi‘om concern
combinatorial configurations, in other configurations ip complex or other planes.
Mostly it is assumed that the inscription is “regular”, by which is diidetitond thit
the order of sides of a polygon and the order of the \'t‘rti(:(‘s of the inﬂ(‘l;ib(“(l polygon
coincide. The concepts have been used to generate varioys families ot: confi umt‘imb‘-
However, several of the assertions found ip these papers are lu)t\truv —\f they are

we shall not give details. In Sections
nts that can be interpreted as streamlined

of no particular relevance for our discussion.
4, 5, and 6 we shall discuss developme
families of such polygons.
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FIGURE 10. The smallest known non-Hamiltonian configuration
(n3); here n=22.

One special case deserves particular mention: In many cases an (n3) configura-
tion can be presented as an n-gon inscribed and circumscribed to itself. Interpreting
this situation via the Levi graph it is clear that such an n-gon represents a Hamil-
tonian circuit in the configuration. The circuit passes through each point precisely
once, and utilizes each line precisely once. As mentioned earlier, Kantor [K4| as-
serted that every configuration (n3) has a Hamiltonian circuit. This was disproved
by Steinitz [S7] by an example with n = 28. The smallest example of this kind
is shown in Figure 10 (from [D4]). Steinitz [S7] also mentions that he verified
the existence of Hamiltonian circuits for n < 11. Nothing seems to be known for
12 <n < 21. I

-

CONJECTURE 3.6. All connected combinatorial (n3) configurations with n < 21
are Hamiltonian.

Both the n = 28 example of Steinitz, and n = 22 example in Figure 10 are only
2-connected. Until recently, I believed that 3-connected configurations (n3) always
have a Hamiltonian circuit. However, this is not the case: There is a 3-connected
geometric configuration (503) with no Hamiltonian circuits (see [G13]).

CONJECTURE 3.7. Every connected (n4) configuration has a Hamiltonian cir-
cuit.

4. Configurations (n4)

The history of configurations (n4) is much shorter than that of (n3). It seems
that among the first to publish examples of such configurations, both combinatorial
and geometric, while aware of the need to distinguish between them, was Brunel
[B11] in 1898; this work seems to have escaped attention of all later writers. In an
carlier paper Brunel followed the ideas of a polygon inscribed and circumscribed
to itself, which had been quite popular at the time, as a special class of (combi-
Natorial or geometric) configurations (nz). In [B11] he pursued this idea farther
b:\' considering a polygon doubly “inscribed and circumscribed” to itself. In botli
Sltuations we would call such polygons “Hamiltonian circuits” in the configuration
Each line of such a polygon is incident, besides the two points (vertices of the poly-‘
%011) that define it as a side of the polygon, with precisely two additional vertices of
”‘;Pl%l:\'guu. He determines that any combinatorial configuration (ny) must satisfy
lgurl~1111 ‘[Bll] Brunel gives two constrpctions. 11} ‘the .ﬁrst‘ he presents an orderly con-
N Co:ull)('m. t ab'le, mld.stutos' that 1vlnl.v the verification Fhat this indeed determines

‘atorial configuration (354) is easy, the graphical representation requires



194 BRANKO GRUNBAUM

some effort. From this (especially in view of his later comments) one may conclude
that he had a geometric realization of this configuration. In fact, this conﬁgmation
turns out to be isomorphic to the geometric configuration (354) mentioned in [G14],
communicated to the authors by Ludwig Danzer. Although no reasonable diagram
of this configuration seems to be available, it can be described easily enough by 4
construction of the kind used by Cayley and others in similar context a century
and a half ago. In the case under discussion, start with seven points in genera]
position in real 4-space; consider the 35 2-planes and 35 3-spaces they generate,
and intersect this family by a 2-dimensional plane in general position to obtain the
required geometric configuration (354).

Brunel’s second construction yields combinatorial configurations (n4) on which
a cyclic group operates transitively. This includes the explicitly specified config-
urations for 13 < n < 16, but the results presented are marred both by typos,
and by outright errors. Without noticing their abstract isomorphism, in several
cases Brunel lists isomorphic doubly selfinscribed and selfcircumscribed polygons
as distinct. For example, in case n = 13 Brunel lists translates of {0,1,4,6} and
{0,1,3,9} as the two polygons, although the permutation

(0)(1)(2)(3,4)(5)(6,9,8,10,12,7)(11)

maps the first polygon onto the second. But even allowing for these shortcomings,
we see that Brunel anticipated the corresponding results of Merlin [M2], and even
went a bit beyond them. A corrected list would show one cyclic configuration (or
polygon) for n = 13 and 14, three for n = 15, and two for n = 16. This coincides
with the recent list of cyclic configurations given by Betten and Betten [B3], to
which we shall return soon. Brunel also noted that translates of {0,1,4,6} yield a
configuration for all n > 13; this anticipated a result of Gropp [G2].

Merlin mentions in [M2] that configurations (n4) have not been investigated
systematically, although some isolated ones were discovered by F. Klein [K1], W.
Burnside [B12], and others. He constructs a combinatorial configuration (134) and
proves its uniqueness and minimality. He also constructs a configuration (144) and
proves it is unique. Merlin states that there are exactly three distinct configura-
tions (154) which, however, are not presented. In fact, he is mistaken. As shown
by Betten and Betten [B3], there are four different configurations (154), three of
which are cyclic and coincide with the three doubly selfinscribed and selfcircum-
scribed polygons of Brunel (who did not comment on the possibility of noncyclic
configurations (154)). In the same context, Merlin makes two additional errors: (i)
He claims that his three configurations (154) can be distinguished by the number of
vertex-disjoint triangles present in them, which he claims to be 5, 1 and 0, respec-
tively. In fact, all four configurations (15,) have five such triangles, the maximal
possible number. (ii) He states that his configurations (134), (144), and (154) have
orderly configuration tables (which is correct and proved by Steinitz in [S6] for all
configurations (ny)), and states that it follows that there is no Hamiltonian circuit
for any of them — which is wrong. Steinitz’s orderliness result has no such impli-
cations, and Brunel’s explicit constructions in [B11], of which Merlin is unaware:
provide counterexamples to Merlin’s claim.

By a construction analogous to the one devised by Martinetti for configurations
(n3), Merlin shows that f X

4 e or every n > 30 there are combinatorial coni‘igul”&tionS
(n4). In fact, it is easy to show that there are such configurations for all n 2 13. As
to the number N(n) of distinct combinatoria] configurations (ny), the only known
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. \.[ e

FIGURE 11. A set of nine points and nine lines that is realizable
in the real Euclidean plane but is not realizable in the rational
Euclidean or projective plane.

values are those given by Betten and Betten [B3], namely N(13) = N(14) = 1,
N(15) = 4, N(16) = 19, N(17) = 1972, and N(18) = 971171. For n > 15 these
numbers have not been independently verified.

As far as is known, none of these combinatorial configurations is geometrically
realizable. Merlin [M2] shows that the configurations (134), (144), and (154) are not
geometrically realizable. But he also notes that geometric configurations (n4) do
exist for infinitely many values of n. His construction uses “stacks” of configurations
of type [3, 3] and vertical lines through their vertices to construct configurations of
type [4,3], and then stacks of duals of the projections of these into the plane to
construct configurations of type [4,4]. While this yields geometric configurations
(n4) for infinitely many values of n, there are infinitely many n that are not covered.

The latest result in this direction, established by a variety of mostly ad hoc
constructions, is given in [G12], the last of several papers on this topic:

THEOREM 4.1. Connected geometric configurations (ng) ezist for all n > 21,
except possibly for the following ten values of n: 22,23,26,29,31,32,34,37, 38, 43.

CONJECTURE 4.2. [G12] No combinatorial configuration (ns) with n < 20 is
realizable.

It is also highly probable that there exist no geometric configurations (n4) for
the ten values of 7 listed in Theorem 4.1.

CONJECTURE 4.3. No combinatorial (n4) configuration on which a cyclic group
acts transitively has geometric realizations.

It should be noted that in contrast to Conjecture 3.2, there exist (n4) config-
Urations that can be realized in the Euclidean plane but not in the rational plane.
The simplest construction I know starts with the collection of nine points and nine
lines shown in Figure 11. It is well known (see [G9, Section 5.5], [B9, pp. 5, 40])
that thig “partial configuration” cannot be represented in the rational projective
(or Euclidean) plane, but it is easily seen that it can be imbedded into an (ng)
tonfiguration with n < 44.

5. Highly symmetric configurations: Astral configurations

A considerable part of the recent interest in geometric configurations is due

t ] i !
0 the resylts obtained in the study of configurations that have a large degree of
geometric Symmetry.
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FIGURE 12. The smallest astral configuration of type [4,4]: the
configuration (244), which has symbol 12#(5, 4, 1,4).

Configurations (n3) and (n4) must have at least two orbits of points and two
orbits of lines; by the terminology introduced in Section 2, configurations with
these minimal numbers of orbits are called astral. Some instances of astral (n3)
configurations have appeared earlier, but without any systematic considerations;
we shall return to the historical examples and references is Section 6.

In general, there are three classes of h-astral configurations (n):

(i) Configurations h-astral in the extended Euclidean plane E2t but not con-
tained in the Euclidean plane E? itself.
(ii) Configurations h-astral in E?, with a cyclic group of symmetries; we call
them h-cyclic, or polycyclic if the value of h is not relevant.
(iii) Configurations h-astral in E?, with a dihedral group of symmetries; we
call them h-dihedral, or polydihedral if the value of h is not relevant.

It should be noted that for even k, all h-astral configurations (n) are h-dihedral.
For k = 3 there exist astral (that is 2-astral) configurations of all three classes. We
shall discuss additional results later.

The remaining part of this section is devoted to h-astral configurations (),
and in particular the astral ones among them. These configurations are the best
explored kind, hence we discuss them first. Since they are all polydihedral, we shall -
simplify the terminology and call them h-astral resp. astral for short.

The first drawing of an astral (n4) configuration (or of any (n4) conﬁguration!)
seems to have appeared in [G14]; it is the (244) shown in Figure 12. This was the
beginning of a development I would like to sketch now in a few words.

I had been wondering what other (n4) configurations exist for which there 8r°
just two transitivity classes of points (and two classes of lines) under isometric
symmetries of the configuration — that is, astral configurations. Manual drafting
of diagrams soon reached the limits of reliability. At about that time, Stan Wagor
gave a series of talks at the University of Washington, extolling the virtues an
ease of use of the Mathematica software as both a computational tool and a grap d
one. As it turned out, it was really easy to write a program that tested for ¥ S
spans of diagonals of an m-gon do appropriate intersection points of the diagona™
together with the vertices of the m-gon, form a configuration (n4), where # =
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TABLE 2. Symbols of the 27 basic sporadic astral configurations
(ng). The full meaning of the symbols m#(s1,t1,s2,t2) will be
explained below. Here it suffices to note that n = 2m, and that s
and t, are the spans of the diagonals of the m-gon.

S02(T.61,4)  30#(7,41,6)  30#(8,6,2,6)  30#(11,10,1,6)
304#(11,6,1,10)  30#(12,10,6,10) 30#(12,11,2,7) 30#(12,7,2,11)
30#(13,12,1,8)  30#(13,8,1,12)  304(13,12,7,10) 30#(13,10,7,12)
304(14,13,6,11) 30#(14,11,6,13) 304#(14,12,4,12) 424#:(13,12,1,6)
424(13,6,1,12)  42#(18,17,6,11) 42(18,11,6,17)  42#(19,18,5,12)
124(19,12,5,18)  604:(22,21,2,9)  60#:(22,9,2,21)  60#(25,24,5,12)
604(25,12,5,24) 60#(27,26,3,14) 60#(27,14,3,26)

(The span of a diagonal in a convex polygon is the number of edges spanned by the
diagonal.) The first of the experimental results showed that this happens if and
only if n = 2m = 12k for some integer k > 2. Figure 12 shows the case k£ = 2, while
Figure 13 shows six astral configurations with k£ = 3 (that is, (364) configurations).

The more detailed study of which pairs of spans of diagonals of a polygon with
m = 6k sides yield 2-astral configurations led to a puzzling situation, which is
illustrated in Figure 14. (In order not to prejudice between the two spans s and ¢,
both points (s,t) and (¢, s) are indicated; the hollow circles denote pairs for which
there are two different configurations for the same spans.) The valid pairs seemed
to exhibit no visible regularity. But as the experimentation continued to larger
values of k, illustrated in Figure 15, a clear indication emerged: Most of the pairs
satisfy simple linear relations, with only a few “sporadic” pairs besides. This led
to the trigonometric verification that the experimentally obtained pairs do in fact
correspond to astral configurations, and to the listing of such configurations known
to exist given in Theorem 5.1 (see [G11], where a slightly different notation was
used; two errors in the data of [G11] have been corrected in [B1]).

THEOREM 5.1. There ezist two infinite families of astral configurations (ng),
that can be described by the symbols (6k)#(3k — j, 2k, j, 3k — 25) where k > 2 and
1< j<k—1, and (6k)#(2k, j, 3k — 25, 3k — j) where k > 2,1<j<2—1 but
]f k qnd, if k is even, j # 3k/2. There also exist 27 basic sporadic configurations
listed in Tabie 2, and their multiples.

. The ‘Conjecture that the astral configurations specified in Theorem 5.1 are the
- \}},v Tle? Was expressed in [G11], and established by Leah Berman in her University
sikigk :mgton 'dOCtora,l thesis in 2002. This can be formulated as Theorem 5.2

as published in [B1]. |

THEORE ! — :
tioms (n:)).l.ihM 9.2 (Berman). The following is a complete list of astral configura-

(i) Configurations having vertices on two concentric reqular m-gons, where

(i) nC%o:j“n./?! t.hat are l.z'sted in. Theorem 5.1;
" lllgu,mtm?ls having 'uertzce's not on two concentric reqular m-gons that
“Sult by taking two concentric copies of one of the configurations in part

('l) Tot(l,tcd ‘lUit} i T
) LLn 7‘6.5‘])6le tO Cach Othe th ou h an a € 0 3
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Ficure 13. The six different astral configurations (364), with
their symbols. The two configurations in each row are polars 0
each other. The labeling of the three configurations at left indi-
cates an isomorphism between them,
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FIGURE 15. More plots of the parameters of existing astral con-
figurations (ny).

This is probably easy to settle by a suitable generic example. The really hard

problem in this context is finding how many non-isomorphic astral configurations
(n4) are there for each n.

I also offer

CONJECTURE 5.4. No astral configuration (ny) is isomorphic to a geometric
configuration in the rational projective plane.

The known results concerning h-astral configurations with h > 3 are far less
complete. The first example — the unique 3-astral configuration (214) described
in (G14] and shown in Figure 16 — is the smallest of all known geometric con-
figurations (n4), h-astral or not. The underlying combinatorial configuration has
been known for a long time (first described, it seems, by Klein [K1] in 1879), and
its realizations in the complex plane or in finite planes were investigated by many
people (see Burnside [B12], Coxeter [C6], and the references in [C8]).

The study of h-astral configurations was greatly advanced by the work of Boben
and Pisanski [B8], who called them h-cyclic or polycyclic. Their ideas were among
those utilized in [G12] in the proof of Theorem 4.1. The following account differs
in details from the approach in [B8]; it was developed during the presentation “
the material in courses I gave at the University of Washington, and in preparatxon
for a workshop in Bled (Slovenia) which unfortunately I could not attend. :

The starting point for almost all h-astral configurations is a notation for ine’”
section points of diagonals of span s of a regular m-gon, illustrated in Figure 1 il
explained in its caption. (One exception is described below, and shown in igur

. <o 8
23.) A notation for a connected h-astral configuration C can be devised usi? &
characteristic path as follows:
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FIGURE 14. Plots of the parameters of existing astral configura-
tions (ng).

trivial way on the characterization .of multiple
intersection points of diagonals in regular polygons. Althoug_h that questlcg? applearg
to be a simple problem it is, in fact, surprisingly dgep and delicate. It wa.? IfSt. sp \tre
(except for minor glitches) by Bol [B10] but his result was agpfzfuenttyf mgoEr ;eln
until the work of [R3], where the solution was presented in a di erlelfl orrbn; [pgﬁ
solution was presented in a much more accessﬁ.)le and more gbenera, d(')m;ve)red :
in 1998. (In the intervening years, varioufs spzc%al [;)agles) have been redisc y
several authors. Many references can be found 1n [t'9]-) )
The enu?lrirationyof astral configurations (ny) given .1111Tl.1eokrlen$ns.alb§$l tohz
dealt with geometrically distinct configurations. Very little is s ;3 m abou tl;at
1somorphism classes of these configurations. One ratl?er ;me;{ptewo et
the six astral configurations (364) shown in Figure 13 are o }?r:; );O et e
types. The configurations in the left ¢ aorphic )

olumn are ison thes 8
i ' isomorphic to eac
labe“ng shown, while those on the right must therefore be p
Other, since they are polars of the ones

at left. It is not hard to show that the
Configurations of each polar pair are not i

somorphic. We venture:
12k, with k > 3, not all connected astral

Berman's proof relies in a non-

CONJECTURE 5.3. For each n =
onfigurations (ny) are isomorphic.
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figurations (ny).

This is probably easy to settle by a suitable generic example. The really hard

problem in this context is finding how many non-isomorphic astral configurations
(n4) are there for each n.

I also offer

CONJECTURE 5.4. No astral configuration (ny) is isomorphic to a geometric
configuration in the rational projective plane.

The known results concerning h-astral configurations with h > 3 are far less
complete. The first example — the unique 3-astral configuration (214) described
in (G14] and shown in Figure 16 — is the smallest of all known geometric con-
figurations (n4), h-astral or not. The underlying combinatorial configuration has
been known for a long time (first described, it seems, by Klein [K1] in 1879), and
its realizations in the complex plane or in finite planes were investigated by many
people (see Burnside [B12], Coxeter [C6], and the references in [C8]).

The study of h-astral configurations was greatly advanced by the work of Boben
and Pisanski [B8], who called them h-cyclic or polycyclic. Their ideas were among
those utilized in [G12] in the proof of Theorem 4.1. The following account differs
in details from the approach in [B8]; it was developed during the presentation “
the material in courses I gave at the University of Washington, and in preparatxon
for a workshop in Bled (Slovenia) which unfortunately I could not attend. :

The starting point for almost all h-astral configurations is a notation for ine’”
section points of diagonals of span s of a regular m-gon, illustrated in Figure 1 il
explained in its caption. (One exception is described below, and shown in igur

. <o 8
23.) A notation for a connected h-astral configuration C can be devised usi? &
characteristic path as follows:
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FIGURE 16. The 3-astral configuration (214), which is the smallest
known geometric configuration (n4). It can be described by the
symbol 7#(3,2,1,3,2,1), the derivation and meaning of which is
described in the text.

Bt
pa

FIGURE 17. The notation for intersection points of diagonals of
span s of a regular n-gon. Assuming the polygon to have unit cir-
cumcircle, the label [[p, ¢]] for a point means that it is situatd on the
diagonal of span s, and that it is the gth among the intersections
of that diagonal with other diagonals of the same span, counting
from the midpoint of the diagonal. For example, the point D has
label [[4,3]].

i Choose an orientation, say counterclockwise, and orient all diagonals of the
egular m-gons (that is, lines of the configuration) accordingly. Choose an arbitrary
Point Py of ¢ a5 starting point of the path, and through it an arbitrary line L, of
for which Py is the earlier of the two points in the same orbit. On L; we take
wiihﬁrzt point (according to the order on Lj) of the other orbit of points incident
~ &1, and denote it P,. Through P; pass lines of an orbit other than that of
w; ,ywsffhoose as Lo that one for which P; is the earlier point. Qontinuing in this
" Os»en er a finite number h of steps we return to the first orbit of points. The
ihiers Tﬁomts determine the characteristic path. Hence the polygons are m-gons,
' = n/h and the configuration is h-astral. Then the configuration C can
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be described by a symbol of the form m#(s1,t1, 52, t2, 83,3, *++1Shyth), Where s;
is the span of the diagonal Lj of the jth polygon, and [[s5 tJ]] 18 the: symbol of the
point Pj on L;. It should be noted that, in general, the point Py will not coingjg,
with Py. Note that necessarily each entry is a positive integer, different from the
adjacent ones (understood cyclically), and is less than m/2.

The characteristic path PyP, P, ... P, describes and determines the configurg.
tion. It is indicated by a heavy gray line in the examples in Figures 18 anq 19.
Different starting points and choices of lines lead to equivalent symbols; they re-
sult by cyclic permutations of each other that advance through an even number of
Places, or else by a reversal of these. On the other hand, it is easy to show that
advancing an odd number of places (and reversals of these) lead to symbols of the
configuration polar to the starting one. Details can be found (with slightly different
notation and terminology) in [BS].

The entries in a symbol m#(s1,t1, s2,%2, 83,3, -, 8k, ts) cannot be chosen
arbitrarily. It is not hard to verify that the symbol must satisfy the conditions

(%) S14+t1+sg+tg+s3+t3+--+5p+th is even

and

P cos(msy/m) cos(mwsa/m) ~cos(msk/m)
cos(mty/m) cos(mtz/m) cos(mtx/m)

If these necessary conditions are satisfied, a combinatorial configuration (n4) can al-
ways be constructed, simply by following the indications of the path PyP\ P, ... PB,.
However, to assure connectedness, besides conditions (*) and (**) we need:

(* * ) If m,s1,t1,80,12,53,13,...,5k,tn have a common factor f > 1, then the

numbers m/fv sl/fi tl/fa 32/f) t2/fa S3/fa t3/f7 saiey Sh/f, th/f fail to Sa'tiSfy at

least one of the conditions (x) and (**).

The conditions (*), (), and (* * %) are sufficient to assure the existence of a
representation of the combinatorial configuration implied by the symbol

m#(81, tl’ 52, t21 53, t31 ey Sh,th).

However, according to [B8], for realization (rather than representation) an addi-
tional condition is required:

(% * %) No proper subsequence (s;,t;, 8;41,tit1,. .. , 8k) yields a symbol
m#(sia tia Si+1, ti+1a ceny Sky t*)

that satisfies conditions (%), (*x), and (x * *), where 1 < t* < m/2. Dually, no
proper subsequence (t;, Siy1,tit1,. .., Sk, tx) can yield a symbol

m#(s*, i Sit+1, ti-H, N tk)
that satisfies conditions (), (*%), and ( * %), where 1 < s* <m/2.

In Figure 20 we show an example of a symbol that fails condition ( * **) and
hence leads to a representation that is not a realization.
The h-astral configurations (n4) can be classified into three types:

o Trivial are configurations for which the symbol is such that the (un-
ordered) set of s;’s coincides with the set of t;’s. Hence conditions (*
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FIGURE 18. A 3-astral configuration (304), with symbol
104#(4,3,1,3,1,2). This symbol is composed of the label [[4,3]]
of point Py, label [[1,3]] of point P, and label [[1,2]] of point Ps.
The spans of the lines L; are 4,1 and 1, respectively. Note that the
parameter ¢; in the label [s;, ;] of the point P; can be interpreted
as the span of L; in the polygon formed by the points in the orbit
of PJ

N
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= X )’»
UKL
S

fllGURE 19. A 4-astral configuration (444), with symbol
[[3#;(4, 1,3,4,2,3,1,2). Note that P, has label [[4,1]], P, has label
All, Py has label [[2,3]], and P; = Py has label [[1,2]].
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FIGURE 20. In each of the examples, a characteristic path starts at
an enlarged dot and is shown in gray. (a) The necessity of condition
(*) is illustrated by the 3-astral symbol 154(4,3,2,3,1,2), which
does not lead to an (n4) configuration. (b) The er,ltr’ies,of the
symbol 30 (8,4, 2, 6,4, 6) have a common factor 2, but this symbol
leads to a connected configuration since condition (***) is satisfied.
(c) The symbol 12#(5,4,1,5,2,1,3,2,4, 3) satisfies condition (%)
(#*) and (* * *) but not (x % *%). This is not a realization 0%
the symbol, since lines of one orbit are incident with six points
each, and points of one orbit are incident with six lines each. The
explanation is that if we take only the first four parts of tl;e list
in parentheses, and change the termina] o to a 4, we obtain a
valid symbol 124#(5,4,1,4) illustrated by the chare;cteristic path
QoQ1Q2. This is the symbol of the configuration shown in Figure
12, which can easily be seen as formed by the two innermost orgbits
of points and lines.
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and (*x) are satisfied trivially, with no need to calculate the trigonomet-
ric functions. An example is the configuration (214) shown in Figure 16,
with symbol 7#(3,2,1,3,2,1).

o Systematic are configurations having symbols which are derived by ex-
plicit formulas for the parameters, for infinitely many values of n. Thus
the satisfaction of condition (x) is verifiable by manipulations of the
trigonometric functions, again without the necessity to actually calculate
the values of these functions.

e Sporadic are configurations that are neither trivial nor systematic.

As visible from Theorems 5.1 and 5.2, astral configurations are either systematic
or sporadic. However, for each h > 3, there are trivial h-astral configurations as
well.

In unpublished work, L. Berman has identified four families of systematic 3-
astral configurations m#(a, b, ¢, d, e, f):

(5.1) m = 2q, {a,c,e} ={q—p,q—2r,p}, {bd, f}={q—2p,q—77}
(52) m = 3q, {a,c,e} ={q+p,qa—p,p}, {bd,f}={q,q,3p}

(53) m = 6q, {a,c,e} ={3¢—p,r,p}, {bd,f}={3q—2p,2q,r}

(54) m = 10q, {a,c,e} = {5¢ —p,2p,p}, {b,d, f} = {|5¢ — 4p|,4q,2q}.

Examples of configurations in each of these families are shown in Figure 21.

In Figure 22 are shown several h-astral configuration (n4) that exhibit vari-
ous unusual phenomena. Some of these are easy to explain, but some are rather
puzzling.

There are many open problems concerning h-astral configurations (n4). A few
of the more striking are:

e A complete characterization of representations of 3-astral configurations.
This should take into account also configurations such as the one in Figure
23, found by L. Berman (private communication). This configuration falls
outside the scope of description by symbols we used here. It is not known
whether there are other configurations of this kind — it is hard to imagine
that there is only a single one!

® What is the explanation for configurations such as the one in Figure 22(b),
that are describable by our symbols but incompatible with condition (¢
*x)7?

® Isit possible for an h’-astral configuration to be isomorphic to an h”-astral
configuration with h’ # h"'?

® Are there finitely many basic sporadic h-astral configurations for each h?

® What are the possibilities of (n4) configurations of the kind shown in
Figure 24, which is (2, 3)-astral (in the notation introduced in Section 2)?
What other unequal pairs of numbers of orbits can occur?

6. h-astral configurations (n3)

The study . o
. hl( Ttud_\ of these configurations is much less advanced, and promises to be
* cha

SOUrces Ofl:llll%il:g:than thc. investigation of the (ny) §011ﬁ.gufati01ls. There are two
Many ks t; jfu?ot.y possible for h-astral (n3) configurations. Ol.l the one hand, in
real \"&’lluc;- (l)(,w 18 at least one pa.ramet,e‘r that‘ can assume a ?ontnm.mm of different

5 On the other hand, if h > 3, a line of the configuration can contain
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Type(1): Type(2):
3=9p=2,r=3 m=18,g=6,p=1
184:(7,6,3,5,2,3) 184(7,6,5,6,1,3)

K N A
d 9 RZ =t A
N IR SV
7 UK

Type(3): Ty
pe(4):
m=18,g=3,p=2,r=4 m=20,q=(2)p=3
18#(7,6,4,5,2,4) 20#£(7,4,6,8,3,2)

FIGURE 21. Examplgs of systematic 3-astral configurations of the
four knowp systematic types. One characteristic path is indicated
in each, with the starting point shown by an enlarged gray dot

points from either two or three different orbits. Even more than in the case of (n4)
configurations, the case h = 2 of astral confi ) .

’ urat ‘ : m
h-astral with h > 3. gurations is radically different fro

As mentioned above, the h-astral configurations (n3) come in three varieties:

) plr' (jijecm(}elly fi-astral, that is configurations h-astral in the extended EV-
cirdean (that is, projecti 2+ - :
itself: projective) plane E2*, but not in the Euclidean plane E
e h-cyclic (chiral), that i . ) _
eroup. ( ), that is, configurations in E? with a cyclic symmetry

e h-dihedral, that i i i
ral, that is configurations F2 with a dihedral symmetry group-
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FIGURE 22. (a) A representation of the 5-astral configuration
with symbol 14#(3,1,4,3,1,3,2,4,3,2); it has two orbits of lines
incident with six points each. One line of each such orbit
is emphasized. One orbit arises from the trivial configuration
14#(3,1,4,3,1,4). The other orbit arises from the sporadic con-
figuration 14£(3,2,3,1,4,5). The points in the two outermost or-
bits are incident with six lines each. (b) A representation of the
S-astral configuration 9#(3,1,4,3,1,3,2,4,3,2). The heavily drawn
line represents the orbit of lines through six points that arises from
the trivial 3-cyclic configuration 9#4(3,1,4,3,1,4). The dashed line
arises from the 3-astral configuration with symbol 9#(3,1,3,4,3,2).

owever, this symbol does not arise from the original by the pro-
ess in condition (* % % *). This seems to indicate that condition
* % %) needs to be strengthened. (c) the representation of the 5-
'ast.ral configuration 12#(3,1,4,3,1,3,2,4,3,2) has one orbit of lines
II‘ICId.ent with six points each, and one orbit of points incident with
SIX lines, Tt also has one orbit of lines incident with five points,
gfle of which ig incident with five lines. (d) A representation of the
inaeStr‘al f:onﬁgu;atio'n 124(4,3,1,4,3,4,3,1,4,3). It has two orbits of
it }? 1nc1den-t Wwith six points each, and two orbits of lines incident

Ve points each; analogously for points.

207
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FIGURE 24. A 3-dihedral configuration (404), in which the points
form two orbits and the lines form three orbits. It is constructed by
starting with the vertices of a regular decagon, taking diagonals of
span 3 and diameters. This is a configuration of type [3,4]. Taking
a concentric copy, suitably rotated, one can add additional lines
which yield a configuration (404). Here the angle of rotation is
arccos((19y/5 — 1)/44) = 19.464602895°.
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FIGURE 25. Examples of (n3) configurations that are astral in the
extended Euclidean plane E?* but not contained in the Euclidean

plane E? itself. The unattached dots indicate points at infinity.
[ ]

FIGURE 26. Two configuration (n3) that are 3-astral in the pro-
jective plane E?* but not in the Euclidean plane E2. Note that
the first one has only two orbits of lines, each containing points of
all three orbits. The other has only two orbits of points, but three
orbits of lines.

6.1. Examples of projectively astral configurations are shown in Figures 25
and 26. The first configuration in Figure 25 is a realization of the Pappus con-
suration; see Coxeter [C5]. A 3-astral realization of the Desargues configuration
Ci?i)i l};l E** is given by Coxeter [C4, Figure 6]. It is clear that similar examples
e found for h > 4. At least for small h, the complete characterization of

Projectively astya configurations may be relatively simple but seems not to have
®eN worked oy

Dlesi‘fz' }?-Cyclic configurations (n3) are much more interesting. A few exam-
gTaphicc?'chc configurations are shown in Figures 27 and 28. The first published
‘a

4 TePresentations of h-cyclic configurations seem to be those of Visconti
Schti;l?li::ysc i (203) reproduced as Figure 9, and a 3-cyclic (303). IF is ironic that
beey, - [S2] shows drawings of configurations (123) and (93) which could have
the same (glte_(_l o 3-cyclic — but were drawn with non-regular polygons. This is

chonflieg who a few years later determined the 230 discrete symmetry

Broupg
of the Euclidean 3-space! Zacharias [Z1] shows several examples of what are
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(a) (b)

FIGURE 27. The two smallest 2-cyclic configurations (ns): (a)
(103) with symbol 5#(2,2;1) and (b) (123) with symbol 6#(2,2;1).
The symbols are explained later in the text.

T#(3, 2; 1)*

T#(3,3; 1) T#3, 1; 2) 7#(3,3:2)

FIGURE 28. The six geometrically distinct 2-cyclic configurations
(143), and their symbols. The four symbols without asterisks cor-
respond to selfpolar configurations. The other two are polars of
each other; since they have the same parameters, they are is0-
morphic as well. The two configurations in the left column are
isomorphic; the labels indicate an isomorphism. Thus there are
four non-isomorphic 2-cyclic configurations (143).



CONFIGURATIONS OF POINTS AND LINES 211

NN/
AN,

4
.A‘A\

\ TR~

\P. N
AV W X
\ S <7 N

FIGURE 29. A pair of 2-astral configurations (143) polar to each
other. Black: T7#(3,2;1)* = 7#(3,2;1); gray: T#(3,2,1)* =
7#(2,3; 4).

2- and 3-cyclic configurations (n3); he comments on their star-shaped appearance,
and mentions that other such configurations may be formed — but does not discuss
the symmetries as such, nor any general methods of construction.

It is obvious that each line of a 2-cyclic configuration must contain two points
from the same orbit, and one from another orbit. The notation used in these
examples will be explained later; it is a special case of the notation

m#E(by, ba, ..., bp;bo; A1, A2, ...y An—2)

—Orin a shorter symbol m#(by, b, ..., bs; by) — for h-cyclic configurations of this
kind. Here n = hm and we have h — 2 real parameters A; besides h + 1 discrete
ones b;. Together these parameters lead to a quadratic equation for an additional
gﬂrameter. This equation can have 2, 1 or 0 real solutions — in the last case there
T€ 10 cor responding configurations.
Oqualg Particular, 2-cyclic configurations have no free pa}rameters A - The quadratic
o On and the remaining real parameter are determined by the integer parame-
S M (by, by bo). In case there are two distinct values for the real parameter, if
indicgp append to the symbol m#(by, be; bf)) one or two asterisks * or **, to
:‘( W'hether the larger or the smaller value is used.
. nﬁg‘:lrl?:z{ntod out in [B8], the dual of a configuration m# (b;, b_2, sy br; bo) is the
ki exa]; 1;)11'711#((),“1,,1_1’ ooy Uiy By 4 By 4w+ by = Bg). T.lus is 1llllstrz}ted by
the cag, 8 ¢ In Figure 29. It should be noted t;hat for 2-cyclic configurations, in
(b e g l:‘ determining equation has two distinct real roots, the c_onﬁgurations
iguré ‘),9 H and m# (b, ¢;d)** are duals of each other. In fact, as illustrated in
~% Hiey are related by a polarity.
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FIGURE 30. Negatively selfpolar configurations 5#(2,2;1) and 8#(3,3;2).

Extensive experimental evidence shows that symbols m# (b, c; d) of representabe
2-cyclic configurations must satisfy:

0<c<b<m/2
c—b+1<2d<b+ec,

0+#d+#c,
2cos(br/m) cos(em/m) < 1+ cos((b+ ¢ — 2d)m/m).

CONJECTURE 6.1. The above conditions are necessary and sufficient for the
existence of a 2-cyclic configuration m#(b, c; d).

The 2-cyclic selfpolar configurations (n3) are quite interesting; they come in
three varieties. The first kind corresponds to symbols of the type m#(b, b; d), with
I = d < b; they are negatively selfpolar. By this is meant that the polar of the
configuration is a mirror image of the configuration itself. This is illustrated by the
examples in Figure 30. The only other selfpolar configurations are the ones with
symbol m#(b, ¢;d), where b # ¢ and d = (b+c)/2. They are positively selfpolar,
that is, the polar is congruent to the original without reflection. But depending on
the parity of b (and c), the polar either coincides with the original, or differs from
it by a non-trivial rotation. These two possibilities are illustrated in Figures 31 and
32. :

CONJECTURE 6.2. There are no selfpolar 2-cyclic configurations (n3) beside
those described above.

We turn now to explain the notation for h-cyclic configurations in which e;c d
line is incident with points of two orbits only; the remaining case will be descr! ‘o0
below. Our explanation is illustrated in Figure 33, using a 3-cyclic configurat!
(273) as an example.

As mentioned before, the symbol for an h-cyclic configuration (n3)y oF
n = hm, is of the form mft(by, by, ..., by; bo; A1, A2, ..., Ap—g); the pa-fameters of
again determined by a characteristic path. The entries by, ...,by are the SP .
the diagonals in the different regular m-gons that are determined by the pathh the
diagonals are all oriented in the same way — clockwise or counterclockwisé; ine
real numbers A1, Ay,..., Ay_; denote the ratios in which each diagonal deter™

whel' (7
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FIGURE 31. Positively selfpolar configurations 10#(4,2;3) and
13#(6,4;5), with b and c even.

o

\N
) L
AN NN
TR

FIGURE 32. Positively selfpolar configurations 9#(3,1;2) and
11#(5,1;3), with b and ¢ odd.

by a segment of the path is divided by the endpoint of the segment. The path
returns to the starting polygon, but not necessarily to the starting point of the
path. The parameter by indicates the vertex of the first polygon at which the char-
acteristic path ends. These data lead to a quadratic equation for the ratio Ah—1 On
the next-to-last segment; the ratio applicable to the last segment is then completely
determined. Thus there are either two, or one, or no real geometric configurations
corresponding to a given symbol. There are also possibilities of unintended inci-
dences similar to the ones we encountered earlier, hence we are in general talking
about "epresentations of the symbols, rather than realizations. In case the param-
eters /\1,/\2,...,/\,,_2 in a symbol m#(b1,bz,...,bn;bo; A1, A2,..., Ah_2) are not
relevant or not known, we abbreviate the symbol to m#(by, ba, ..., by; bg).

9#(311@ example in Figure 33 presents a 3-cyclic configuration with symbol
ete;’3j2§§§ :5). The points of the three orbits are denoted by B;,C;,D;. The
. Tlu'latlon of t.he symbol is highlighted by the. three-.step characteristic path.

25 l‘lt the ratio \; can be chosen freely, and in the illustration it was taken

1 = 0.5. Once the first h — 2 = 1 ratios A; are chosen, the last ratio A

(determin: . :
“'Mining the position of the point of last orbit on the penultimate diagonal)



214 BRANKO GRUNBAUM

94(2,3,2;6;0.5)

FIGURE 33. The characteristic path BoCyDyBs is represented in
the symbol by the first four parts; the first three integers are the
spans of the respective diagonals, the fourth indicates the point of
the first orbit at which the path ends. The last parameter indi-
cates the ratio in which the segment ByB; is divided by the point
Co. This parameter can be freely chosen (with some limits); the
analogous parameters for the other two segments are then deter-
mined.

is determined by a quadratic equation. (For details see [B8].) In the illustration
Ah—1 = Az is about 2/3. Naturally, the symbol is not unique since it depends,
besides the Aj’s for h > 3, on the orbit of the starting point, and on the orientation
chosen. The influence of the parameter A\, _, is illustrated in Figure 34.

Using symbols like u,v,w, ... for elements of the different orbits of points,
we can say that the h-cyclic configurations considered so far have lines of type
{u,u,v},{v,v,w},.... But other possibilities exist in which the incidences of lines
with orbits of the points are different. For example, in case h = 3, it is possible
to have three orbits of lines, all three of the type {u,v,w}, or else, one of the
type {u,v, w} and the other two of types {u,v,v} and {u,w,w}. Three examrfles
of the former variety are shown in Figure 35, while examples of the second kin
are illustrated in Figure 36; the rightmost diagram in Figure 3 shows the .(93)3
configuration, which is of this kind. A notation for the configurations in Flgﬂr‘;
35 is explained in the caption: no notation has been proposed for the kinfjl by
configurations shown in Figure 36. No additional details about either of the kinds
are available as of this writing. :

h-cyclic configurations in which lines of one or more orbits are incident wiil
points of three orbits have not bheen studied at all.
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1,2,3,5,06) 41,2,3,5,08)

FIGURE 34. The dependence of the configuration 7#(1,2,3;5;A1)
on the parameter \;. For a value of \; somewhat smaller than 0.8
the representation would not be a realization. The last diagram
can be interpreted as nearly illustrating this case.

- 6.3. h-dihedral configurations are also largely uninvestigated. One difference
Il comparison with h-cyclic configurations is that even for h = 2, isomorphic 2-
hedral configurations admit a real-valued parameter. This is illustrated in Figure
37 by a family of 2-hedral configurations (123); the configurations in each row are
polars of each other. Examples of other kinds of 3-dihedral configurations are shown
n Figures 38 and 39.
lThere are many open problems related to h-astral configurations. In most cases
the information available at this time does not lead to any specific conjectures. Here
are a few examples.
* Are non-Hamiltonian h-astral configurations (n3)?
® Determine the number of different isomorphism classes of h-cyclic con-
figurations (ny), at least for h = 2. What relations exist among the
Parameters of isomorphic h-cyclic configurations?
® Are there combinatorial configurations (ng) that can be represented by
h-cyclic configurations for different values of h? ‘
* Characterize self-dual polydihedral configurations.
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3L

(a) 3#(1,1,1] (b) T#[1,4,2]

(c) 18#[2,-1,3]

FIGURE 35. Three examples of 3-cyclic configurations, in which
each line is incident with one point in each of the three point orbits.
The symbol near each can be used as a description. After choosing
a triangle (gray lines) with vertices in the three orbits, the numbers
in brackets indicate which of the points A;, B;, C} is one of the lines
a, b, ¢, respectively. (a) is a realization of the Pappus configuration
(93),. The configuration in (b) has as its Levi graph the only cyclic
3-valent graph with 42 vertices; it appears in the Foster census

[F1).
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FIGURE 36. In these 3-cyclic configurations there is one orbit of
lines each of which is incident with one point of each of the three
point orbits. There are two orbits of lines each of which is incident
with points from only two point orbits each.

* Does every astral configuration (n4) contain an astral subconfiguration
(n3) ?

* Which 2-cyclic (or 2-dihedral) configurations (n3) are only representations
(not realizations) of the underlying combinatorial configurations?
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3#(1, 1;0; 0.75)* 3#(1, 1; 0; 0.75)**

FIGURE 37. Pairs of mutually polar 2-dihedral configurations

(123), all isomgrphic, illustrating the dependence of the appear-
ance of the realization on the value of a convenient parameter.
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(a) (b)

FIGURE 38. Two 3-dihedral configurations, (a) is another realiza-
tion of the Pappus configuration (93); this is the smallest 3-dihedral
configuration. (b) A (153) configuration.
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FIGURE 39. A 5-dihedral configuration (403). (Courtesy of L. Berman)
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FIGURE 40. A 3-astral configuration (48s,604). Adding the 12
points of infinity in the direction of the lines of that configura-
tion yields a (605) configuration 3-astral in the extended Euclidean
plane EZ2.

7. Other astral configurations

It is easy to show that the only configurations (ng4) that are astral in the
projective (extended Euclidean) plane E2* are also astral in the Euclidean plane.
The same goes for astral configurations (ns) — but vacuously: there exist no astral
configurations (ng) (see Berman [B2]). However, the situation is different for astral
configurations (ns). Starting with two concentric copies of the astral configuration
(244) shown in Figure 12, rotated by /24 with respect to each other, and adding
12 diametral lines, an astral configuration (485, 604) is obtained. By adding 12
points at infinity, a (605) configuration astral in the extended Euclidean plane E?*
results, see Figure 40. A similar construction works with all astral configurations
(n4). The astral configuration (505) indicated in Figure 41 is obtained by a variant
of that construction, possible in this case. These diagrams are the first published
depictions of any (ns) configuration, as well as of any configuration of type [5,4]-
It may be conjectured that the (505) configuration in Figure 41 is the smallest (ns)
configuration astral in the extended Euclidean plane E?*, However, we have:

CONJECTURE 7.1. There ezist no (ns) configurations astral in the Euclidean
plane EZ.

Nothing seems to be known about the existence or nonexistence of configura-
tions (n5) or (ng) that are h-astral in the Euclidean plane E? for h > 4.

Concerning geometric configurations of type [q, k] that are not equinumerous
(that is, for which g # k) very little information is available. Data on combinatorla-]
configurations of this kind can be found in [G4] and [G5).

It is well known that for each integer r > 3 there exists a combinatorial €08-
figuration ((47)s, (37)4), and these are the only possible ones of type [3,4]- There
is no geometric configuration (125, 94), but for every r > 4 there exist geometrc
configurations ((4r)s, (3r),) astral in E2. Typical examplgs are shown in Figuré 42.
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/, Ny

FIGURE 41. Without the lines through the center, this is the (404)
configuration with symbol 104(4,3,1,2,3,4,2,1). Including these
lines gives a 3-astral configuration (405,504). With the addition of
ten ideal points we obtain a configuration (505) that is 3-astral in
the extended Euclidean plane E2t.

FIGURE 42. The smallest geometric configuration of type [3,4],
astral in E2.

Configurations (124, 163), have been investigated (at least in special cases) for
€ 1o two centuries. Details and references are available in [G3], where it is
Stated that there are 574 combinatorial configurations (124, 163). It is not known
'OW many of them are geometric. Polars of the configurations in Figure 42 are
onfigurationg of type [4, 3] astral in the extended Euclidean plane E**. It is not
lown whether any are astral in E2.

For each integer r > 4 there exists a combinatorial configuration ((57)3, (3r)s);
30 Other configurations of type [3,5] are possible. There is no geometric configura-
'on (20, 125), but for every r > 4 there exist geometric configurations ((57)3, (37r)s)

clos
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FIGURE 43. Configurations (363, 18g) and (423,21¢) astral in the
Euclidean plane.

FIGURE 44. A gonﬁguration (303, 156). Deleting the six outermost
points and adding the point at the center yields a configuration
(253,155).

astral in E?; their construction is analogous to the one of configurations of tyPe
[3,4] in Figure 42.

It can be shown that combinatorial configurations of type [3, 6] exist if and only
if the parameters are ((2r)3,76) with 7 > 13. For all j > 6 there exist geometric
configurations ((65)s, (3j)e) astral in the Euclidean plane; typical examples
shown in Figure 43. It can be shown that astral configurations ((2r)3,76) do no
exist if r is not a multiple of 2 or a multiple of 3; however, no example is known
in which 7 is not a multiple of 3. It is also not known whether there exist 2%
geometric configurations (283, 14¢), but a non-astral configuration (303, 15¢) exists
and is indicated in Figure 44.

This essentially exhausts the current information available about astral and
other geometric configurations. It clearly leaves many kinds of open problems’
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anging from Very elementary to highly technical. It is my hope that the present
ril osition will contribute to a renewed interest in geometric configurations, and in
fille)ir generalizations (such as configurations of pseudolines).
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