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1. INTRODUCTION

The use of trees as diagrams for groups was anticipated in 1904, when C.
Rodenberg was commenting on a set of models of cubic surfaces. He was
analyzing the various rational double points that can occur on such a surface.
In 1931, I used these diagrams in my enumeration of kaleidoscopes, where the
dots represent mirrors. E.B. Dynkin re-invented the diagrams in 1946 for the
classification of simple Lie algebras. For instance, the graphs

S S I . PPN

are related to Wilhelm Killing’s algebras
A & D 5, E6 5 E7, E8.

Man)’ other applications have arisen since that time (see, for instance,
EWINKEL, HESSELINK, SIERSMA and VELDKAMP 1977). . .

Since Rodenberg made use of double-sixes, it seems appropriate to begin

this history with a summary of the pioneering work of Arthur Cayley, George

Salmon, Jacob Steiner, and Ludwig Schlafli.

2 THE NON-SINGULAR CUBIC SURFACE _ , . .
lnce straight line usually intersects a cubic surface in three points, a line

i ' i face. In
A contains four points of the surface must lie .entlrely on the surfac
1849, such considerfﬁons persuaded Cayley that, since the whole projective 3-
Pace congaing o? lines, the general cubic surface should contain a ﬁmt.e
Mumber of them. He com’munjcated this idea to Salmon, who replied that this
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finite number is 27. Five years later there was an equally fruitful correspon-
dence in Switzerland between STEINER (1857) and SCHLAFLI (1858). Steiner
showed that a certain set of 9 among the 27 lines can be regarded as the inter-
sections of two trihedra, that is, two sets of three planes. Since each of the 27
lines lies in 5 such planes, there are altogether 45 of them. Moreover, there are
120 of his pairs of ‘conjugate’ trihedra.

In his reply, Schlafli described his famous double-six

a, a, ay a4 as 4ds

by by by bs bs be 1)

such that two of these twelve lines intersect if and only if their symbols occur
neither in the same row nor in the same column; thus a, intersects b, but is
skew to a, and b,. The planes a,b; and a,b, intersect in a line ¢3(=cy))
which, containing four points of the surface, lies entirely on it. By considering
the possible intersections of other lines with the plane ab,, Schlafli easily

verified Salmon’s number 27: the 2X6 lines a,, b, and the |5 lines
Cp(p<v).

Any two of the 27 lines are either intersecting or skew. The intersecting
pairs are -

ayby, aycy, biciz, C12€3a, CIC
while the skew pairs are

a\b,, a,ay, byb,, a\cy, bycy3, €12€13, ©tC.

(Schlafli 1958, p. 213). In particular, two lines of the form c,, intersect if their
subscripts have no common digit, but are skew if they have one common digit.

3. THE WEYL GROUP E¢ OF ORDER 51840
The group of automorphisms of this configuration of 27 lines was investigated
by JORDAN (1870, p. 317), MASCHKE (1888, p. 320), BURKHARDT (1891, p. 317)
and DICKSON (1916, p. 348). Although these men made successively simpler
choices of generators and relations, it seems that none of them saw how to
generate this group by six involutions, suitably chosen from among the 36
involutions observed by BURKHARDT (1891, pp. 324-326). Each of these 36
involutions interchanges the two rows of a double-six while leaving invariant
the remaining fifteen lines. Those authors apparently failed to notice the sim-
le structure of the set of 36 double-sixes, namely, that any two of them con-
tain either 4 or 6 common lines: 4 forming a ‘double-two’ (two skew pairs of
intersecting lines) or 6 forming a ‘grid’ (two intersecting triads of skew lines).
When there are 4 common lines, the corresponding involutions commute
(AB = BA, or A<—2->B); but when there are 6, the involutions are braided

(ABA = BAB, or BA=A8, or A(;»B). For instance, the double-six (2.1)

shares with
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fay by €23 €24 €25 Czs]

Laz by c13 Cia €15 Ci6

1hc4linesa‘.az.b..bz.and with
[a) @; @3 Csg Cas Cas
c2 ci3 ci2 by bs bg

the 6 lines @, a2, a3, bs, bs, bs. The corresponding involutions are the permu-
tations

N = (aby)(a1b3)(a3b3)(ashs)(asbs)(aghs),
N 2= (@) a2)(by b2) (¢ 13 c23)(€1a €20) (€15 €25) (€16 €26):
N = (a) c23)(@2¢13)(a3¢12) (ba cs6) (bs ca6) (bs Cas)

(Gruser and WirLs, 1983, p. 112). CARTAN (1894, p. 331) called them
T, S 12, S 123- One might say briefly

N=(ab)o NI2=(12)’

and observe that N transforms N 3 into Ng. Three involutions 4, B,C may
conveniently be said to form a braided triad if

ABA = BAB = C,;
for then also BCB = CBC = A and CAC = ACA = B. Among the 36 involu-
tions arising from the double-sixes, typical commutative pairs are

NN 2, N 2N, NN N 2N sss, NiaN s,
and typical braided triads are

N 12N 13Nas, NN12aNass, NN 1aNasa.

In particular, two involutions of the form N, are commutative or braided
according as their subscripts have an odd or even number of common digits.

4. SINGULARITIES

RODENBERG (1904, pp. 5, 32) used the notation Apv for the double-six
corresponding to Ny, and invented a diagram in which symbols for two
dw_ble-sixs are linked when they share 6 lines (so that the involutions are
braided) but not linked when they share only 4 lines (so that the involutions
‘ommute). He was investigating the possible singularities of cubic surfaces. In
this project he essentially anticipated the discovery by DU VAL (1934) of a
“onnection between double points

BJ. B4. 85. 86. Ug, U1. Ug. Uq
Biplanar or Uniplanar) and reflection groups
A AS A, As, Do Ds, Eé: Es
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(see also ArNOLD 1974, pp. 21, 24; FISCHER 1986b, p. 13). For instance,
Rodenberg described the uniplanar double points Uy by a diagram

165

425 632

and mentioned that Us could be derived by appending 164, just above 165, so
as 1o make a ‘triquetra’ (COXETER 1988, p. 23, 26) which would be symmetrical

by the permutation
(135)(246).

His seemingly unnatural ordering of digits (165 rather than 156, and so on)
was determined by his insistence that, when two neighbouring triads have two
common digits, these should occur in the same two positions.

In a trigonally symmetrical model of a cubic surface with 27 real lines
(FiscHER 1986a, Figures 10, 11, 12) those seven double-sixes appear as seven
‘holes’ or ‘passages’ (Durchgiinge), any two of which are visibly adjacent or
non-adjacent according as the corresponding double-sixes share 6 or 4 lines.

Rodenberg’s diagram for Uy exhibits six involutions which suffice to gen-
erate the Weyl group Eg. He happened to choose six which are all of the form

N But instead of

N 56
|
N s Nys ———— Njjg ———— Ny —— Ny
he could just as well have chosen
1}’123
N Ny ———— Ny ————— Ny ———— Nss

so as to reveal Schlifli’s symmetric subgroup of degree 6, generated by the
transpositions

(12), (23), (34), (45), (56).
The same diagram, with the six generators differently named. appeared

independently in one of my early works (COXETER 1932, p. 164). While that
paper was in press, I realized that, instead of naming the generators, we could

simply use dots. In fact, the graph

m+L4———0
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%Mﬁsi %;?n;:alzlg; :ﬁ' he group [3**')=E¢ (Coxeren 1931, p. 133
:h cm, Ere Hiked o;' n.ol lmke:i :(::So ::liarl"cscnl involutory generators, an'dpl'wo o'[
b ed o commutative. By remg g as the corresponding involutions are

smi ving generators su : .
we can similarly present subgroups p ccessively from the right,
pp- 31, 27)- groups Ds, A4 and A, X A, (RODENBERG 1904,

5. THE DEL PEZZO SURFACES

Pezzo (1887, pp. 243- :
x:c?nE;er F og a faxflsyzgzrfz >3) regarded the cubic surface in 3-space as the
s g 2 aces F3 of order n in n-space for n<9. This
surprising inequality arises from del Pezzo's ingenious ar
thetically (without any direc ; g1, developed
He Y ny t appeal to coordinates). He first observed that
an algebraic surface, being a 2-manifold, must be either a cone or another kind
of ruled surface or a non-ruled surface, and that these three categories are
preserved by.prOJecuon from a point into a hyperplane. The order of the sur-
face (its maximal number of intersections with a general kse) also is preserved,
except when the centre of projection lies on the original surface, in which case
the order is diminished by 1. In particular, a surface F3 is projected, from a
point on itself, onto a surface F3 =1 in (n — 1)-space. Projecting this again, and
continuing, we eventually reach a cubic surface F3 in 3-space. When F3 is pro-
jected onto F3 =1 a set of m mutually skew lines on the former yields a set of
m+1 such lines on the latter, the extra one arising from the neighbourhood of
the centre of projection, or from the tangent plane there. Since F3 has a maxi-
mal set of six skew lines (such as a,, * ", @) F} has a maximal set of five,
F} of four, F§ of three, F} of two, F$ contains at most one line, and F3 has
none. Finally, a surface of order 10 in 10-space must be ruled (or a cone)
because a non-ruled F}° would yield a line on F3. This shows that non-ruled
surfaces F} occur only when n=<9.

Since the tangent plane to F3 at the centre of projection yields a line on

G i F? have the same relations of incidence as fhose lines on
T et i the 27 lines on F3, each is skew 1o 16

F;~' which are skew to one. Among
others; for instance, bg is skew 10

ag
b' b2 b by bs
€12 cn C C45
€13 €24 €35
€4 €25
€15 .
ines on the quartic surface F

and we 6 A

can use these same Sym bols for the ] Gimilarly, the quintic surface
(which ¢ i two quadric folds). ! e F} which are
°°nlamls' u;el:)mhnsrso:c:::inogf the samCl e incidence 35 those lines on F2

W 10 one, say ag, namely
(‘l <py< 6))

Cw

229
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these .being the 10 in the last four lines of the above list. The sextic surface F§
contains 6 lines having the same incidence as those on F3 which are skew 1o
(say) c45, namely the ‘double-three’

Cla Cq Cy4
€15 €25 C3s

which ma?' be regardcd as a skew hexagon ¢4 €15 C24 €15 €34 €25. The septimic
surface F} contains 3 lines having the same incidences as those on F$ which
are skew to (say) cys, namely

€24
Cis Cis

Here a new situation arises because ¢4 intersects both ¢ s and ¢35, which are
skew. Accordingly, there are two distinct octavic surfaces F3: one containing
just one line, ¢,s or ¢35, and the other none. Finally, the unique novenic sur-
face F} again contains no line.

6. UNIFORM POLYTOPES

A few years before his work on the cubic surface, SCHLAFLI (1852, pp. 215,
224) discovered the regular polytopes, including the simplex a,, the cross
polytope B, and the n-cubey,. GosseT (1900) enumerated the uniform (or
semi-regular) polytopes, later called py (p<5, in p +4 dimensions), each of
which is the vertex figure of the next (CoxeTer 1932, pp. 130, 163). Their
facets consist of regular simplexes pag=a, +3 and cross polytopes py = Bp+3:
their numbers of vertices,

for p= -2, -1, 0 ), 2. -3 % 5,
are 3, 6, 10, 16, 27, 56, 240, oo.

Unaware of Gosset's discovery, I rediscovered these ‘pure Archimedean’
polytopes about 1925. Three years later I gave a talk on them at one of Profes-
sor H.F. Baker's Saturday afternoon tea-parties (in the Arts School of the
University of Cambridge), attended by about a dozen students and colleagues.
When 1 had written the above sequence of numbers on the blackboard, a col-
league who was well acquainted with algebraic geometry (J.G. Semple?) excit-
edly remarked that the first six are precisely the numbers of lines on the del
Pezzo surfaces F3 7.

If, instead of British geomelers, my audience had consisted of French
someone would just as eagerly remarked that the same numbers

analysts,
the work of ELIE CARTAN (1894, p. 343) as factors of the order

appeared in
240 X 56 X 27 X 16 X 10 X 6 X 2

which was already implicit in ‘The greatest mathemati-

f the Weyl grou Eg,
= - (CoLEMAN 1989, KILLING 1889, pp. 23, 28-29; WEYL

cal paper of all time’
1935, Appendix).

The symbol pgr, of which py, is a special case, first arose as a name for the
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olytope with triangular faces whose vertex fi i — ing th
fruncated simplex ex figure is (p —1)g, Op being the

t‘l Qg drel = traq+r+l

(COXETER 1978, p. 131). The same symbol Pgr Was later recognized as a natural

abbrevi'ation.for a decorated Coxeter-Dynkin diagram. For instance, 5, is the
eight-dlmensmnal honeycomb

@— -® ©- >— o o _o

(CoxeTER 1988, p. 34).

7. PROJECTIVE n-SPACE AND EUCLIDEAN (9 —n)-SPACE

Gosset’s polytopes had already been rediscovered in 1910 by ELTE (1912).
ScHOUTE (1910) recognized one of them (Elte’s Vy7, my 2;,) as representing
the cubic surface in such a way that the 27 vertices, 216 edges and 135 diago-
nals of the polytope correspond to the 27 lines, 216 skew pairs and 135 inter-
secting pairs on the surface. This remarkable correspondence was rigorously
explained by Topp (1932). Figure 1 (drawn by Peter McMullen) shows the
most symmetrical two-dimensional projection of the six-dimensional polytope.
Its 27 vertices appear as 12 + 12 + 3; two concentric dodecagons with the
remaining three vertices all projected into the centre (COXETER 1940, pp. 461-
463; see also EDGE 1970, p. 757).

Since skew lines on the cubic surface F3 correspond to adjacent vertices of
2,1, the lines on F3 that are skew to one of them correspond to thpse vertices
of 2,, which are adjacent to one vertex. In other words, the lines on F3
correspond to the vertices of the vertex figure of 221., which is the hemi-cube
I) = hys (Elte’s HMs). Continuing, we see that the lines on F3 correspond to

the vertices of (5—n)a, for n <.7.
In detail, 1,, has the 16 vertices
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FIGURE 1. The six-dimensional polytope 2,,

(0,0, 0,0, 0)

(09 l| l. l' l) (l. 0. l. l. l) o e e .(l‘ l' l‘ l. 0).
(1,1.0,0,0) (1,0,1,0,0) ... (0,0,0,1. h
(with an even number of ones), and these represent the 1+ 5+ 10 lines
as
by by --- b

€12 €13 °°° ¢y
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on the quartic surface F3. Similarly, the vertex figure of 13 is the truncated
5-cell
02 = tiag

(Elte’s tCs), whose 10 vertices

(1,1,0,0,0) (1’0a1v0,0) et (070’071,1)s
the midpoints of the edges of the four-dimensional simplex
(2,0,0,0,0) (0,2,0,0,0) --- (0,0,0,0,2),

represent the 10 lines
Ci2 €13 "7 Cgs
on the quintic surface F3. And the vertex figure of 0y, is the triangular prism
(—Da = Xy
(Du VAL 1933, p. 33), whose 6 vertices
(1,0,0,1,0) (0,1,0,1,0) (0,0,1,1,0)
(1,0,0,0,1) (0,1,0,0,1) (0,0,1,0,1)
represent the lines
Cla C2a C34
€15 Cas €35
on the sextic surface F$. The vertex figure of (—1)y; is the isosceles triangle

0, 1,0,1,0)

(1,0,0,0,1) (0,0,1,0,1)
whose 3 vertices represent the lines
€24
C1s €35
on F}. Finally, at distance V2 from (1, 0, 0, 0, 1) we have only (0, 0, 1, 0, 1),
and from (0, 1, 0, 1, 0) we have none, agreeing with del Pezzo’s discovery of
two distinct kinds of F3. . .

Proceeding in the opposite direction, we would like to utilize the fact that
2 is the vertex figure of the seven-dimensional polytope 3;, (COXETER 1988,
P- 32) and hence to describe the 56 lines on some-kind of two-dimensional ‘del
Pezz0 surface’ F3. C.F. GEISER (1869, p. 129; DICKSON 1916, p. 351) observed
that the enveloping cone from an arbitrary point P on the cubic surface inter-
S°Cts an arbitrary plane in a quartic curve whose 28 bitangents arise from the

27_ lines, along with the tangent plane at P Du VaL (1933, p. 57) interpreted
$ result as meaning that the cubic surface F3 is projected from P onto a
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‘Geiser surface’ F3 which consists of a repeated plane, branching along the

quartic curve whose 28 bitangents count as |, line pairs

c12Ci2, ¢13Cy3, -+, ¢c13C1s.

The line pair ¢, C,, (0.<v<7) arises from the line ¢, on F3,¢,7Cy frgm
a,,c,gC, from b,, and c,3Csg from the tangent plane at P. The two coin-
cident lines c,, and C,, are regarded as intersecting each other twice: at the
two points of contact of this bitangent with the quartic curve. Pairs that inter-
sect just once are ¢,C,3, ¢34, C12Ca4, etc, while skew pairs are
¢12¢13, C12C13,¢12C34, etc.. In particular, the lines skew to Cyg are
¢ (p<v<T), C,, C,5; these are projections of the lines ¢, a,, b, on Fs.

We see from the coordinates (COXETER 1988, pp. 8, 25, 28) that, in terms of
the edge-length as unit, the polytope p,; for p < 3 has diagonals of length V2,
while 3,, (COXETER 1928) has also diameters of length V3. Thus, in every case
with2<n<6and m=1or2 (or 3if n=2);

Two vertices of the polytope (5—n),, at distance N/ m represent two lines on
the surface F, having m — 1 points of intersection.

In particular, as we have seen, any two of the 27 vertices of 2, belong either
to an edge (m =1) or to a diagonal (m =2), and any two of the 27 lines on F3
are either skew or intersecting,.

Taking successive vertex figures, we see that, since E¢=[3*%'] is both the
symmetry group of 25, and the automorphism group of the lines on F 3

[33~"21] is the symmetry group of (5—n),,
and the automorphism group of the lines on F3.
In detail (COXeTER 1988, p. 17), the groups
E;, E¢, Es=Ds, E4=A,;, E;=A,XA,
(mentioned at the end of §4) are the symmetry groups of the polytopes
30, 221, lay=hys, 0 =tias, (1) =ayXaq
and the automorphism groups of the lines on the del Pezzo surfaces
F3, F, Fi, F, F

8. DIAGRAMS CONTAINING CIRCUITS
The complete list of irreducible reflection groups, finite and Euclidean (Cox-
ETER 1934, p. 619), has been quoted so often that there is no need to repeat it
here. (Some confusion is caused by many authors’ unfortunate habit of calling
the Euclidean groups ‘affine’.) One notices that the Coxeter-Dynkin diagram is
a tree in every case except

[3["]] — /;in—l’
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where it is an n-gon (COXETER 1988, p. 5). In this case, if we work in the

h lane Zu, = 0 of Cartesian n-space, the n generators R, are reflections in
the hyperplanes
u) "'ll2=0. u, —u;:o' s ll,...l—'u,=0. u, — Uy +1=0:

each R,(r<n) transposes the coordinates u, and u,.;, while R, is the
iransformation

[ -— -—
Wy =upt 1, Wa=uy crc, Wy = Uy, u'y=u; — L

This infinite reflection group has an infinite normal subgroup generated by
rranslations such as 77, where

T=R|R2..'Ran—1Rn—2"'Rz; (8.1)
that is, T is the translation
u'.:ul +1, u’zzuz—l’ u‘)‘_‘u;."’.ll',,:ll,,.

To symbolize its quotient group G(p,p,n) of order p” ~'n! (SHEPHARD 1953, p.
379; SHEPHARD and TopD 1954, p. 277; CoxXeTER 1957, pp. 244, 248, 251), we
decorate the Coxeter-Dynkin diagram by inserting the number p inside the n-
gon. Just as in the case of A, itself, any two of the n generating involutions

Ry, -, R, are braided if their subscripts are consecutive in cyclic order and
are commutative otherwise, and we have also the extra relation
=1 (8.2)

Since 77 is the translation

w'y =u '*'P- u'y =u; —p, u', =u, (v>2),
we may now regard the coordinates as residues modulo p. Thus when p =2,
the group is D,, permuting the 2" ' vertices of the hemi-cube hy, (COXETER
1988, p.5), namely the points

(EL LD
with an even number of minus signs. We may equally well take the coordinates
10 be homogeneous and replace R, by

u'y=—u, u,=u,(1<v<n), Wp=—u.

In other words, the Y-shaped diagram for D, can be replaced by an n-gon
With the number 2 written inside. .
When n =3, so that T =R R;R3R,, the diagram

& —— —9

::;r the octahedral group Dy = 43, which is isomorphic to the symmetric group
degree 4, means that the generators R, Ra, R, satisfy the presentation

235
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R =1, R\RyR, = RyR\Ry, R\Ry=R3R,, RaR3Ry = RyRyR,,

Replacing R by its conjugate R; = RyR3R,, we have
E;Rzi; = RzR;RzR;Rz — RzR;Rz,

E3R|§3 = R3R2R|R2R3 - R]RJRZRJRI = RIRJRl
and the period of R|R,R3R; = R Ry is 2. Hence

.¢4=/\5A

In terms of fundamental regions (COXETER 1990, pp. 16, 20), the spherical tri-
angle (3 3 2) is combined with one of its neighbours to form the larger triangle

(333), as in Figure 2 (DAvis, GRUNBAUM and SHERK 1981, p. 163, where B
should be D).

R,

Rl R,

FIGURE 2. The triangle (335) dissected in two two triangles (332)

9. EXOTIC PRESENTATIONS

In the same spirit, whenever two generating involutions 4 and B are braided
we can replace one of them by ABA(=BAB) so as to obtain '
different presentation for the same group. In particular, we can ad
two or three tails) of any length, to a triangle marked 2, and
still be symmetric (COXETER 1957, p. 250). Similarly,
an n-gon marked 2 or, if n >4, as an m-gon marked 2 with m < n and one

tail of length 7 —m. In particular, D4 can be presented as
. 5 ’ a
or by a pair of triangles, both marked 2, with a common sidcj.q M aret

a possibly
d a tail (or
the group will
D, can be presented as
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For E¢ we obtain, in succession, the presentations

In the last case, the generating reflections may be taken to be
N 56

N, N3
N 246 N N 345

A still more symmetrical presentation for E¢, suggested by TSARANOV (1989),
18

with generators

N346 N456

.For Eq,Eq, Eg, Peter McMullen foun
mC]uding

d many other exotic presentations,
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DRjnnmonn

which were almost anticipated by CARTER (1972, pp. 10, 11; see also ScHEL-
LEKENS and WARNER (1988).

Finally, extended diagrams for hyperbolic reflection groups gave been used
by Du VAL (1933, p. 73), VinBerG (1971, p. 1084), CONWAY and SLOANE
(1988, pp. 529, 570) and many others. It was ARNOLD (1974, p. 20) who
remarked that ‘the classification of more complex singularities provides new
wonderful coincidences, where Lobachevsky triangles and automorphic func-
tions take part.'

-
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