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1. Introduction

Any tree, with nedges and n+1 vertices, can be realized in Euclidean n-space so
that its edges, of any chosen lengths, are mutually perpendicular (Coxeter 1989,
p.60). The convex hull of such an orthogonal tree is an orthogonal simplex whose
dihedral angles include (3) right angles. More precisely, each v<-tex of the tree,
being also a vertex of the simplex, represents (as in a Coxeter-Dynkin diagram)
the opposite facet of the simplex. The two ends of an edge of the tree repre-
sent two facets forming an acute dihedral angle; each of the remaining (}) pairs
of facets are orthogonal. This happens because, for any two non-adjacent ver-
tices of the tree, the minimal subgraph joining them determines a simplex (the
orthoscheme of Coxeter 1973, p.137) whose first and last facets are orthogonal.
Since the remaining edges of the tree are orthogonal to the subspace spanned by
the orthoscheme, these “first and last facets” are sections of orthogonal facets of
the whole n-simplex.

2. Edges and Altitudes
Let Py, Py, ..., P, be the vertices (in any order) of an orthogonal tree; let

£,, = P,P,

(for various values of 4 # v) be the lengths of its n mutually orth'ogonal gdges;
and let ag, ay, ..., an be the allitudes of the simplex, so that a, is the distance

from P, 1o the opposite facet. (It may happen that £,, = a or a,.) Finally, let
oy, be the dihedral angle opposite to the edge P, F, (which belongs to the tree),

that is, the acute angle between the facets opposite to Py and P,. Since these are
adjacent vertices of the tree, there are n such angles. Since the edges of the tree
are mutually orthogonal, the remaining () dihedral angles of the n-simplex are

right angles. |
We proceed to establish the surprisingly simple formula

2
(2-1) CoS ayy = ayaV/euv
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Figure 2: The trirectangular tetrahedron

If the vertex P, of the tree has valency 1, so that the altitude from P, coincides
with the edge P, P, and £,, = a,, the formula (2.1) reduces to

(2.2) CoS ayy = ay/a,

and the section of the orthogonal n-simplex by the plane a,a,u is an orthogonal
2-simplex, that is, a right-angled triangle (see Figure 1). Obviously

Cos ao1 = a1/ag, COSajy =aj/a;y.

For instance, if the edges are Py Py, Py P, ..., Py P,, like the axes for n-dimen-
sional coordinates, we have
%o, = a, wv=12,...,n

and the angle oo, between the hyperplanes opposite to P, and P, is equal to the
angle P, Po P, where P P is the altitude ao. (See Figure 2 for the case n=3.)

Hence
cos aoy, = PyP/PyP, = ag/a,,
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RPR  la 4
Figure 3: The quadrirectangular tetrahedron or 3-orthoscheme

in agreement with (2.2).

On the other hand, when the altitudes a,, and a, are distinct from the edge £,,,
they span a 3-space, and the section of the orthogonal n-simplex by this 3-space
is a 3-dimensional orthoscheme like Po Py P; P3 in Figure 3. The edges Po P,
P, P;, P, P3 are mutually orthogonal, and the dihedral angle a2 plays the role of
ayy in (2.1). Itis known (Coxeter 1989, p.67(15)) that

COoSs a1z = sin ap; sin a3,
and we see from the triangles Py P, P, and P, P, P; that
sinao =a1/412 and sinaxn = az /412.

Hence
2
cos a2 = a1a2 [4,,

in agreement with (2.1), which has thus been proved.
Another interesting formula is suggested by a remark of Giinter Pickert. Since
the “weights” ¢, = 1/a, satisfy the equations

cy = E Cy COS @y,

BEv

(Coxeter 1988, p.11), and cos @, = a,a,£;2, we have

23) o2 = z -2
v My

u

su
'ggled over all those edges P, P, of the tree which emanate from the vertex g
angle;nblmng (2.3) with (2.1), we now have the means to express all the dihedral
Of the orthogonal simplex in terms of the edges of the orthogonal tree.
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3. Vectors along the Alititudes

Pickert has observed also that (2.3) can be obtained directly, without using (2.1).
Since the vertices of the tree are named in an arbitrary order, there will be no loss
of generality if we take P, and P, to be P, and Po, and take the edges emanating
from P, to be

Py P, 1<p<m<n)
so that the vertex P, of the tree has valency m. Letey,..., e, denote the vectors
along these edges while e, |, ..., e, are vectors along the remaining edges of the

tree, directed away from P, .

Any point X in the hyperplane P, ... P, (opposite to P) may be reached by a
vector

(3.1) §7=Zmﬁﬁ, Y ot=1
1 1
For any v > m there exists, in the tree, a path to P, from some P, (u < m)

along certain edges lying in that hyperplane. Hence each Py P, with v > m can
be expressed as e, (4 < m) plus a certain sum of eys with A\ > m, and so

(3.2) PoX = f:t;e,, iti, =1,
1 1

each t,, being a certain sum of ts.

g P, P
g —Z & = —&

s €, €

Figure 4: An example withn= 5 andm = 2.

For instance, in the case of the 5-dimensional tree indicated in Figure 4, we
have

PoX =t1PoPi+t2 Py P; + t3PoPs + ta Py Py + ts Py Ps
=t1e; +t2e2 +t3(e2 +€3) +ta(e +eq) +ts(e + es)
= t’,el + tlzez + t’3e3 + th4 + t’5e5
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withty =t +ta+ 15,6 =15 + t3 andt) = ¢, when v > 2., s0 that
tll +t,2 =t + 1, +t3+t4+t5 =1.
although (3.2) holds for any point X in the hyperplane, something special hap-

ns when Po X is the altitude aq (orthogonal to the hyperplane) so that, for all
5e> m, the vector ag along this altitude satisfies

a-e,=0 (U>m-)
In this case (3:2) ylelds t; =0 forallv > m, and

m m

(3.3) B = te, .t =l

Ifm= 1, we have i:lmply ag 1=) _esl ;a(é:\;r:vise ;\0 .may be described as the perpen-
diC;(I)i:rmf:;) T }<D°nl:), th: 5en<1:to—r e —p em lies.i.n. LhTs (m — 1)-space and
2 -(ey—ey) =0, ap-ex=2ap-epn
(the same for all \). Since e? = £3,, (3.3) yields
1385y = trlom = K,

~2 But

say. Sot, = k€5,

Therefore

and
-2
(3.4) a2 = Loy

Thus (2.3) has been proved a new way.
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Since af = k, the unit vector along the altitude ao from P is
m
- -3
%)) la0 = ao Zeopeu-
1

Similarly, the unit vector along the altitude a; (of the same simplex Py P, ... P,)
from P is

ml
-1 -2/ }: -2/
a4 a = 01(210 eo + ely e“))
2

where e{, e;, ... are the m’ edges of the tree emanating from P;. Since £, = Zg;
and

ey = —e
and all the other e, are orthogonal to all the other e,, we have
cos(m— apy) = aglao -al'lal = —000125144’!(2,1 = —000126'12.
Thus
(3.5) cos ay = aoa1lyy
and (2.1) has been proved a new way.

4. The Edge Lengths of Some Important Simplexes

It is known (Coxeter 1973, pp.190-194; Bourbaki 1968, p.199) that each of the
irreducible infinite reflection groups in Euclidean n-space has, for its fundamental
region, a simplex. It happens, in the cases

B'n) Cﬂ) Dm EG: E']s ES, F4) GZ)

(i.e., in every case except Ay), that this is an orthogonal simplex. (In Coxeter
1973, p.194, these eight cases are denoted by

Sn+l) Rﬂ+la QMI) T7) T8) T9| US) %)

According to the “crystallographic restriction” (see, e.g., Coxeter 1973, p.63), the
dihedral angles of such a fundamental region can only be of the form /g, where
g=2,3,4,0r 6. These angles are known in each case, as also are the altitudes a,,
because they are inversely proportional to the “weights” z* or c, (Coxeter 1973,
p.183) which are directly proportional to the contents of the simplex’s facets. To
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compute the edge lengths in terms of the longest edge of the tree as a unit, we
write 1/c, for a, In (2.1) so as to obtain

@) 81, = (G0, 005 ) 7F.

The results are exhibited in the accompanying table.

[n these trees, each edge indicates a dihedral angle o, = /3 of the orthogonal
simplex, except when the edges is double (a,, = w/4) or triple (a, = 7/6).
n the cases Dy, Es, E7, Es, all the edges are single, so cos ay, = 7 and (4.1)

reduces tO
1 _1
EI-W = (—Cucu) L

2
This simple formula was discovered by Edward Pervin, whose letter of 1990 to
the author inspired the present investigation.
Of course, (4.1) refers only to the n mutually orthogonal edges; the rest aré
casily obtained (by Pythagoras) as square roots of sums of squares. For instance,
the longest edge of the simplex for Ej is the square root of

1+1+1+1+1+1+1 2

376 10 15 12 4
This (4/2) is also the longest edge of a 7-orthoscheme which is a facet of the 8-
simplex. We must be careful not to confuse this Euclidean 7-orthoscheme with

the spherical 7-orthoscheme
[ —& —&— —— —0— === —— )

which is the fundamental region for the subgroup Ag of Eg. Actually, the Eu-
clidean 7-orthoscheme, with its vertices numbered from 0to 7, has

cs = 34/3 (instead of 6)

and
1 ;
Qs = Qusg = arccos \/5 (instead of /3.)

5. The Isohedral Simplex for A,
For the sake of completeness, let us compute the edge lengths of the fundamental
region for A,,, although this exceptional simplex has no set of n mutually onhog-
onal edges. According to Conway and Sloane (1988, p.460), the vertex V, gf this
simplex Vo V; ... V, has v coordinates n+ 1 —v followed by n+ 1 —v coordinates
v. Therefore

VoV?2 = ViViog = s
=y(n+1- )2+ (n+1— v)v?

= ('n+ 1)U('ﬂ+ 1 - V))
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whence, after a change of scale,

(5.1 VoV, = Vu(n+ 1 —v).
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