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Uniform polyhedra have regular faces meeting in the same manner at every vertex. Besides the
five Platonic solids, the thirteen Archimedean solids, the four regular star-polyhedra of Kepler
(1619) and Poinsot (1810), and the infinite families of prisms and antiprisms, there are at least
fifty-three others, forty-one of which were discovered by Badoureau (1881) and Pitsch (1881).
The remaining twelve were discovered by two of the present authors (H.S.M.C. and J.C.P.M.)
between 1930 and 1932, but publication was postponed in the hope of obtaining a proof that
there are no more. Independently, between 1942 and 1944, the third author (M.S.L.-H.) in
collaboration with H. C. Longuet-Higgins, rediscovered eleven of the twelve. ;

We now believe that further delay is pointless; we have temporarily abandoned our hope of
obtaining a proof that our enumeration is complete, but we shall be much surprised if any new
uniform polyhedron is found in the future. We have classified the known figures with the aid of
a systematic notation and we publish drawings (by J.C.P.M.) and photographs of models (by
M.S.L.-H.) which include all those not previously constructed.

One remarkable new polyhedron is contained in the present list, having eight edges at a vertex.
This is the only one which cannot be derived immediately from a spherical triangle by Wythoff’s
construction.

1. INTRODUCTION

A polyhedron is a finite set of polygons such that every side of each belongs to just one other,
with the restriction that no subset has the same property. The polygons and their sides are
called faces and edges. The faces are not restricted to be convex, and may surround their
centres more than once (as, for example, the pentagram, or five-sided star polygon, which
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402 H. S. M. COXETER AND OTHERS ON

surrounds its centre twice). Similarly, the faces at a vertex of the polyhedron may surround
the vertex more than once.

A polyhedron is said to be uniform if its faces are regular while its vertices are all alike. By
this we mean that one vertex can be transformed into any other by a symmetry operation.

A uniform polyhedron whose faces are all alike is said to be regular. Four of the five convex
regular polyhedra were known to the ancient Egyptians: the tetrahedron, octahedron and
cube occur in their architecture, and they secem to have played with icosahedral dice
(according to an exhibit in the British Museum). The Etruscans made a dodecahedron
before 500 B.c. (Heath 1921, p. 160). These five figures are generally known as the Platonic
solids, although they were all studied by the early Pythagoreans, if not by Pythagoras
himself.

Plato is said to have known one of the uniform polyhedra with faces of two kinds: the
cuboctahedron. This and twelve others are more usually ascribed to Archimedes, though his
book on them is lost. Five of these thirteen solids were rediscovered by Piero della Francesca
(1416-1492), whose manuscript Libellus de quinque corporibus regularibus is in the Vatican.
This treatise was translated into Italian by Fra Luca Pacioli (1509, pp. 259-266), who added
an icosihexahedron (now known as the rhombicuboctahedron). A glass model of: this last
solid was exquisitely painted by Jacopo de’ Barbari in his portrait of Pacioli, which can
be seen in the Museo Nazionale in Naples.

The earliest complete enumeration of convex uniform polyhedra was made by Kepler
(1619, pp. 116-128), who observed that the definition includes also the prisms with square
side-faces and the antiprisms with equilateral triangular side-faces. For a simple account of
all these uniform solids see Ball (1939, pp. 129, 135-140) or Thompson (1925).

Two new uniform polyhedra were discovered by Hess (1878), and many more were
enumerated by Badoureau (1881) and Pitsch (1881) working independently in France and
Austria. (Badoureau found thirty-seven and Pitsch eighteen.)

Between 1930 and 1932 two of the present authors (H.S.M. C. and J. C.P.M.), by a
fairly systematic enumeration, discovered twelve other uniform polyhedra. Publication
was, however, postponed, in the hope of obtaining a proof that there are no more. In-
dependently, between 1942 and 1944, the third author (M. S.L.-H.) became interested
in the subject through H. C. Longuet-Higgins, who had rediscovered many of the uniform
polyhedra, including two not previously published. By essentially the same methods as
the other two authors, the third author enumerated all but one of the remaining twelve*;
the twelfth, an exceptional case, is that described in § 11 of the present paper. Publication
was likewise postponed, and the authors did not learn of one another’s work until 1952.
In the meantime, five of the twelve were rediscovered by Lesavre & Mercier (1947) who
computed their circum-radii but did not publish any drawings.

The authors’ enumeration of uniform polyhedra is based on a systematic application of
Wythofl’s construction to all possible Schwarz triangles (see §§ 3 and 4). All but one of the
polyhedra, namely, the one just mentioned, can be so derived, and it is the authors’ belief
that the enumeration is complete, although a rigorous proof has still to be given.

The vertices of a uniform polyhedron all lie on a sphere whose centre is their centroid
(Coxeter 1948, p. 44). Those vertices which are joined to any one vertex lie also on a sphere

* Models of these polyhedra are to be found in the Winchester College Museum.



UNIFORM POLYHEDRA 403

around this vertex, and therefore lie in a plane. The faces that come together at this vertex
form a solid angle whose section by the plane is a polygon called the vertex figure, which is
regular whenever the polyhedron is regular.

We shall find it convenient to use the symbol {p} for the regular p-gon, and {p, ¢} for the
regular polyhedron, whose face and vertex figure are {p} and {g}; e.g. the cube is {4, 3}.
This notation is due to Schlafli (1852, p. 213). Strictly, the numbers p and ¢ should satisfy
the inequalities
p>2, ¢>2, (p—Z) (9_2)<4
(Coxeter 1948, p. 5); but for some purposes it is desirable to admit the dikedron {p, 2},
whose faces are two coincident {p}’s, and the polar polyhedron {2, ¢}, whose faces are
coincident digons {2} corresponding to spherical lunes of angle 27/g.

Table 1 contains a list of the Platonic and Archimedean solids, with Schlafli symbols
for the former and a convenient extension for the latter (Coxeter 1940, p. 394). The names
are the customary anglicized version of those used by Kepler (1619, pp. 123-126). Some

authors have preferred to call t{i} the ‘great rhombicuboctahedron’ because the actual

truncation of { ) has some rectangular faces which need to be distorted into squares. The

4
symbol t{2, ¢} for the prism is appropriate since t{p, ¢} has, at each vertex, one {g} and two
{2p}’s. The symbol 3{2} for the antiprism is a little more questionable, as strict analogy
with s{‘; } would require the recognition of ¢ digonal faces; but we naturally regard these

as collapsing to form single edges.

TaBLE 1. CONVEX UNIFORM POLYHEDRA

tetrahedron {3, 3} truncated tetrahedron t{3, 3}
octahedron {3, 4} truncated octahedron t{3, 4}
cube {4, 3} truncated cube t{4, 3}
icosahedron {3, 5} truncated icosahedron t{3, 5}
dodecahedron {5, 3} truncated dodecahedron t{5, 3}
cuboctahedron {i} truncated cuboctahedron t{i}
icosidodecahedron :2} truncated icosidodecahedron t{g}
rhombicuboctahedron r{i} snub cube s{i}
rhombicosidodecahedron rtg} snub dodecahedron s{g}
g-gonal prism t{2, ¢} g-gonal antiprism s{j}

The regular {p, ¢} has N, vertices, N, edges and N, faces, where

4 2pq N, 4q

(1—2) (¢—2)’ 1T a=(p—2)(g—2)° T4—(p—2) (-2

(Goxeter‘1948, p. 13). In terms of these, the numerical properties of the Archimedean solids
may be summarized as in table 2 (see also the beginning of table 7).

N0=4_

51-2
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TABLE 2. NUMERICAL PROPERTIES

polyhedron vertices edges faces

{, ¢} Ny N, Noip}

t{p, ¢} 2N, 3N, No{g} + No{2p}

{g’} N2, N+ Mo}

) v, e, No2a}-+ Ny + N, (24}
T{Z} 2N, 4N, No{q} + N{4} + No{p}
B vy s, N+ 2N, {81+ Mo
) =0 2N, 4N, 2{q) +2,(3)

Itissometimes desirable to modify the definition of the vertex figure so as to give it a definite
size, independent of the size of the polyhedron. The simplest way to do this is to regard the
vertices of the vertex figure as lying at unit distance from one vertex of the polyhedron along
all the edges meeting at this vertex. Then every uniform polyhedron is characterized by its
vertex figure, which is a cyclic polygon having a side 2 cos 7/p for each {p} at a vertex of the
polyhedron. Thus the vertex figure of {p, ¢} is a {g} of side 2cos 7/p; that of t{p, ¢} is an isos-

celes triangle having one side 2cosw/q and two sides 2cos7/2p; that of t{‘b } is a scalene
triangle of sides 7

71 7 71
2c0527!—, QCOSZ»— J2, QCOS%,

that of {‘Z : is a rectangle of sides 2cosw/p and 2cos/q; that of r:‘b } is a trapezoid whose
parallel sides are 2 cos 7/p and 2 cos 7/¢, while the others are both ./2; that of 3{2: is a trape-

zoid of sides 2 cos/q, 1, 1, 1; and that of s{z : is a pentagon of sides

1, 2cos?, 1, 2cosg, 1.

p

. 2
It is therefore reasonable to regard s{

3} as an alternative symbol for the octahedron, and

s{g} for the icosahedron. Similarly, {g

} is another symbol for the octahedron, t{2,4} or

t{z} for the cube and sg} for the tetrahedron.

In our drawings of the vertex figures we shall find it convenient to mark their sides
(the ‘vertex figures’ of the faces) with the values of p instead of the actual lengths 2 cos 7/p.
These numbers p can be translated into lengths by means of table 3 (which includes some
fractional values for use later on). Here, and elsewhere, we use the abbreviation

T = 3{(J/5+1).
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TABLE 3. VERTEX FIGURES OF POLYGONS {#}

b 2 cos 7fp b 2 cos 7fp
2 0 3 \/13 "
4 2 6
5 “/r % L
8 (2+42)t 5 (2=y2)t
10 Bird 1o bir—i
12 (V3+1)/y2 ¥ (W3-1)/y2

2. SPHERICAL TESSELLATIONS

By projecting the edges of a uniform polyhedron from its centre on to the concentric
unit sphere, we obtain a network of arcs of great circles decomposing the surface into
spherical polygons, one for each face of the polyhedron. We shall use the same symbols
for such spherical tessellations as for the polyhedra themselves. Thus {p, ¢} now means an
arrangement of spherical p-gons, ¢ coming together at each vertex. The tessellations

{p,q} and {‘2 } were described by Abii’l Waf4, a tenth-century Arab (see Woepcke 1853,

pp. 352-357).

~ One advantage of shifting our attention from solids to spherical tessellations is that the
symbol {p, ¢} is just as significant when p or ¢ takes the value 2 as when both are greater
than 2. Infact, {2} isaspherical digon or lune, and {2, ¢} is an arrangement of ¢ lunes formed
by ¢ great semicircles (meridians). Moreover, the faces of {p,2} are the northern and
southern hemispheres, regarded as spherical p-gons whose vertices coincide with p points
evenly distributed along the equator. The symbol t{2, ¢} for the ¢g-gonal prism is now fully
justified; this figure has two vertices on each edge of {2, ¢}, just as the truncated cube has
two vertices on each edge of the cube.

Let (p g ) denote a spherical triangle whose angles are

nlp, 7lg, mr.

We know that every finite group generated by more than two reflexions is generated by
reflexions in the sides of such a triangle where p, ¢, r are integers (Coxeter 1948, pp. 81-82).

Since the area (p~1 g1 41— 1) 7

must be positive, the only possibilities are

(227), (233), (234), (235).

We name these Mabius triangles because it was Mébius (1849, pp. 360, 661 ; see also Coxeter
1948, p. 66) who observed that the planes of symmetry of {p, ¢} decompose the sphere into
such a network of triangles (2 p ¢). Since the network contains four triangles for each edge
of {p, ¢}, the total number of triangles (i.e. the order of the group) is

g=4N, =8pg/{4—(p—2) (—2)}.
Another way to find this number is to divide 47 by the area of (2 p ¢).
The whole network is derived from any one of the triangles (the fundamental region)
by the various operations of the group. Mébius illustrated this fact by means of his poly-
hedral kaleidoscope, consisting of three mirrors forming a trihedron whose dihedral angles
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are7/2, w/p, m/q. Itis most convenient in practice to use mirrors cut into the shape of circular
sectors of appropriate angles ¢, ¥, ¥ (Coxeter 1948, pp. 24, 293). A small object, repre-
senting a point, placed within the trihedron, yields g ‘images’ (strictly, the object itself
and g—1 images). When the object is placed on one of the mirrors, the images coincide
in pairs, leaving only 4¢ points. The number is further reduced when the object is on an
edge where two mirrors meet. Infact, as we shall soon see, the images are then the vertices of

gy or fos) or |7}

according as the angle at the edge is 7/q or m/p or 7/2.
This kaleidoscopic construction for polyhedra is appropriately ascribed to Wythoff
(1918) because it was he who first successfully exploited it (in four dimensions).

3. WYTHOFF’S CONSTRUCGTION

In terms of the spherical triangle (which the three mirrors of the polyhedral kaleidoscope
cut out from a sphere drawn round their common point), we are considering the images
of one vertex, say the vertex P of the triangle PQR = (p ¢ r), where the angles at P, Q, R
are m/p, m/q, m/r. The polyhedron whose vertices are the images of P is conveniently denoted

by plan,
which is, of course, the same as p |7 ¢. The vertex P is joined by an edge to its image by

reflexion in the opposite side QR, and the other edges meeting at P are derived from this
one by the mirrors PQ) and PR.

Ficure 1 Ficure 2

If g and 7 are greater than 2, as in figure 1, we find a face {g} with centre Q,and a face
{r} with centre R; thus 2|7 = {q} .

Butif 7 = 2, as in figure 2, the ‘face’ with centre R is a mere digon, which collapses to form
an edge, and the polyhedron is regular:

ﬁlq2={9a[)}°

Since an isosceles triangle (p ¢ ¢) is dissected by its symmetrical median into two right-
angled triangles (2p ¢ 2), the polyhedron is again regular when r = ¢:

plag=2p192 =122}
Thus {lz } is 2| p q; and {p, g} is ¢| p 2 (or alternatively if ¢ is even, 3¢ |p p).
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Instead of the images of a vertex of the triangle PQR or (p ¢ 7), we may take the images
of a point G on one of the sides, say on the side PQ opposite to the angle 7/r. This vertex G
of the new polyhedron is joined by edges to its images by reflexion in the sides PR and QR.
(Any other edges meeting at C are images of these by reflexion in PQ.)

In order that these two edges may have the same length, the initial point C must be
chosen on the bisector of the angle #/r at R. Then the mirrors PR and QR will yield a face
{2r} with centre R. There is also a face {p} with centre P if p>2, and a face {g} with centre
Q if g>2. The polyhedron so constructed is denoted by

palr
or q p|r; thus

Ml2=r{§}, 2q|r=t{rq

(see figures 3 and 4, respectively). Changing the notation again, we see that t{p, ¢}is 2 ¢ | p.

Ficure 3 Ficure 4

FIcure 5 Ficure 6

Another polyhedron is obtained by taking the images of an interior point of the triangle
(p g r). This point is joined by edges of the polyhedron to its images by reflexion in the
three sides of the triangle. In order that these three edges may all have the same length, the
initial point must be precisely the in-centre of the triangles (see figure 5). A suitable symbol is

parl,

with the understanding that the numbers p, g, r may be freely permuted. There are only
three faces at each vertex: a {2p} with centre P, a {2¢} with centre Q , and a {2r} with centre

R. Thus 2pq|=t{£},
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The remaining Archimedean solids are obtained by taking, instead of the whole group
generated by reflexions, the subgroup of index 2 consisting of rotations. In other words,
we regard the spherical triangles (p ¢ r) as being alternately white and black, selecting as
vertices of the polyhedron points in all the white triangles, so situated that the points in
the three white triangles surrounding any black one form an equilaterial triangle (see
figure 6). Thus the faces are {p}’s, {g}’s and {r}’s, each entirely surrounded by triangles; but
if one of p, ¢, r is equal to 2, the consequent digon can be ignored and two of the triangles
have a common side.

Making use of the one remaining position for the vertical stroke, we denote this ‘snub’
polyhedron by 1pgr
(with free permutation again). Thus

|2pq=s{‘3}.

In particular, the ¢g-gonal antiprism s{j} is|22q.

Such results are most easily visualized by referring to a drawing or model of the partition
of a sphere into Mobius triangles. Suitable drawings are either stereographic projections
(Klein 1884, p. 26; Coxeter 1938) or orthogonal projections (Ball 1939, p. 157; Coxeter
1948, p. 66). The ideal model would be a globe with great circles inscribed on it; but an
easily made approximation is the polyhedron whose faces are plane triangles having the
same vertices as the spherical triangles. If the sides of a spherical triangle are ¢, y, ¥, those
of the corresponding plane triangle are proportional to

sin 4¢ :sin 4y :sin ¢
Thus a model for the icosahedral family (to which all the most interesting figures belong)
is the hexakisicosahedron formed by 120 congruent triangles whose sides are

sin 15° 52’ :sin 18° 41" :sin 10° 27" = 2733 :3204:1814 = 6:7: 4
very nearly.

4. THE SCHWARZ TRIANGLES

A very interesting extension of this theory is obtained by considering triangles (p ¢ 7),
where p, g, r are rational but not necessarily integral. The area

(P rg bt 1)

must still be positive, but this condition is no longer sufficient to ensure that repeated
reflexions in the sides will yield a finite network, i.e. a network covering the sphere a finite
number of times, say d times. Those triangles which do yield a finite network we shall call
Schwarz triangles because it was Schwarz (1873, p. 243) who first listed them. It may be
shown that the group generated by reflexions in the sides of a Schwarz triangle is equally well
generated by reflexions in the sides of a certain Mobius triangle

(227), (2338), (234), or (235).

Accordingly, the Schwarz triangle may be classified as dikedral, tetrahedral, octahedral, or
tcosahedral.
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Since the g operations of the group transform the Schwarz triangle into g replicas filling
the surface of the sphere d times, and transform the Mobius triangle into the same number
filling the surface once, it follows that the Schwarz triangle is covered by just d replicas of
the Mobius triangle; e.g. (2 § 5) is covered by three (2 3 5)’s, and (2 3 §) by seven (Coxeter
1948, p. 111). A corner of the Schwarz triangle where the angle is mm/n must be filled with
m replicas of a Mobius triangle having an angle #/n. Thus a given Schwarz triangle (p ¢ 7)
can be recognized as dihedral if two of p, ¢, r are equal to 2, and otherwise

tetrahedral (g = 24), octahedral (g =48) or icosahedral (g = 120),
according as the largest numerator occurring is
3, 4 or 5.

To compute d, we merely have to divide p~14-¢~!+r-1—1 by the corresponding expres-
sion for the appropriate Mobius triangle, i.e. to multiply p=!+¢ ' 471 —1 by

tg=n or 6 or 12 or 30.

For instance, n and d for (2 2 7) are the numerator and denominator of the fraction r (or,
if 7 is an integer, they are r and 1).
Schwarz triangles may also be classified into sets of four (or sometimes fewer) colunar

t i ]. ! / ’ ! ’ ’
rangies (bgn, (pd'7), War), (B0,
where plgp =1, g lg =1, il

(Coxeter 1948, p. 112). The sides of such a set of triangles are various arcs of the same three
great circles.

There is evidently a Schwarz triangle (2 2 ) for every rational r greater than 1. Other
Schwarz triangles are found by systematically dissecting the particular triangles

283), (28%), (283,

which are colunar to (2 3 3), (23 4), (2 3 5) (cf. Coxeter 1948, p. 113, where these were
mistakenly called ‘the largest triangles of each family’). The results are listed in table 5
on p. 430. (In the second row, d may be any positive integer and » any greater, relatively
prime, integer.)

This list agrees with Schwarz’s; but he was content to give the smallest of each set of
colunars. A simple way to verify its completeness is to consider first all possible triangles
(p q ), where p, g, r take the values

2) 3) %J 4) %3 5’

pojot
wjon
LAl

> b b

with the restriction that numerators 4 and 5 cannot occur together (for, if they did, they
would have to occur together in some M6bius triangle). Taking only the smallest triangle
in each set of colunars, and remembering that any spherical triangles must satisfy

pltg i1,
we obtain all the triangles in Schwarz’s own list and also

(33%), (288, (339, (5%%), (333), (§3%95),

Vor. 246. A. : 52
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which can all be ruled out by the following considerations. The first five are isosceles
triangles whose symmetrical medians dissect them into right-angled triangles

(234, (24%), (286), (2310), (254

If repetitions of one of the isosceles triangles could cover the sphere a finite number of times,
then repetitions of the corresponding right-angled triangle would do likewise. But these
right-angled triangles are inadmissible (having numerators 4 and 5 together, or else one
greater than 5); therefore the isosceles triangles are inadmissible too. Finally, (§ § 5) is
colunar to (£ £ 3), and this splits into two triangles (2 5 3) which we have already seen to
be inadmissible.

It has been assumed that p, ¢ and r are all greater than 1, so that spherical triangles with
reflex angles are excluded from the foregoing enumeration. This is because, for any reflex-
angled triangle, there is a set of colunar triangles whose sides lie in the same great circles
and all of whose angles are less than 7; thus it can be seen that the admission of reflex-angled
triangles will not give rise to any essentially new uniform polyhedra. However, it is some-
times suggestive, as in § 10, to associate a few of the polyhedra with certain reﬁex—angled
triangles rather than with Schwarz triangles colunar to them.

5. WYTHOFF’S CONSTRUCTION GENERALIZED

The symbols p| g7, pg|r, pgr|and |p qr, defined in § 3, extend in a natural manner to
the situation where (p ¢ r) is a Schwarz triangle instead of a Mébius triangle. The analogy
is closest when one of p, ¢, 7 is equal to 2. In particular,

5[23=1{35} and 3[2§={}3}
are the star-faced polyhedra of Kepler (1619, p. 122), which Cayley named the small
stellated dodecahedron and the great stellated dodecahedron; and their reciprocals

$l25={55 and §25={3}

are the star-cornered polyhedra of Poinsot (1810, pp. 39-42), namely, the great dodecahedron
and the great icosahedron. The Schlafli symbol {p, ¢} remains appropriate when {p} is the face
and {¢} the vertex figure, {5} being the star pentagon or pentagram.

The analogues of the cuboctahedron {3} and the icosidodecahedron {2} are the dodeca-

4
dodecahedron and the great icosidodecahedron:

5.
2!-;;;5:{2} and mg:{g}

5 2
(Hess 1878, p. 267; Pitsch 1881, p. 87 and Plate I).
As before, the faces of {Z } at one vertex are

. g {0} {3

so that the vertex figure is a rectangle of sides 2 cosn/p, 2 cosn/q.
There are also prisms such as

28/2=t2,) and 2§|2=t2,5
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(Badoureau 1881, Figs. 79 and 80) ; antiprisms such as

2
22553}, l223=sl}, 1228=s(), 12285y}, I228=+]])
3 3 3

z z
2 3

(Badoureau 1881, Figs. 81, 85, 82, 83, 84); truncations
245458, and 2§|3—1(3,§

(nos. VI and XIX of Pitsch 1881, p. 86 and Plate II).

In § 3, t{r, ¢} was shown to be the polyhedron 2 ¢ | » whose vertex was the intersection of
one side PQ) of the spherical triangle (2 ¢ ) with the internal bisector of the opposite angle
at R. The quasi-truncation t'{r, g} may be defined as the polyhedron whose vertex is the inter-
section of PQ) with the external bisector at R, i.e. the internal bisector for the triangle (2 ¢ 7');
thus t'{r, ¢} is 2 ¢ | #'. If r has an even denominator, a quasi-truncation may exist even when
the corresponding truncation does not; if » has an even numerator, both kinds may exist
together. Our list includes the following:

23|5=t{43}, 25[§=t{5, 23|3=t{}3)

(nos. XTIV, XVII, XX of Pitsch 1881, p. 86). Similarly t’{g} may be defined as a non-
q

r}=2q r| or

degenerate polyhedron whose vertex is at an excentre of (2¢7), ie. t’{
2 ¢ 7" |. We find in particular
(3] 3 (3
23%|=t{4}, 2%5]=t{;}, 233 =t{§§}

(nos. X, XII, XIIT of Pitsch 1881, p. 86). Lastly, just as the rhombicuboctahedron-analogue
r{p } can be defined (see § 3) with reference to the internal bisector of the angle at R in the
triangle (p ¢ 2), so r’{‘b } can be defined with reference to the external bisector; thus

r'{‘Z} =p'q|20rpq |2 In particular we have

3 ’3 5 __ % 5 _13
*2‘4:1221‘4:, 55[2——1‘5, 3’§|2——I‘

%
(Badoureau 1881, Figs. 93, 139, 144). Finally, we have the ‘snubs’

1285, (285, 234, [235 [28]

(Lesavre & Mercier 1947), concerning which we shall have more to say in § 10.

The reader may wonder why the list of truncations does not include t{, ¢} (¢ = 5 or 3).
In general, the faces of t{p, ¢} are {2p} and {g}; but when p = § the truncated face {2p} = {1
is a repeated pentagon. In fact, t{3,5} consists of three coincident dodecahedra, while
t{$, 8} consists of two coincident great dodecahedra along with the icosahedron that has

the same vertices and edges (Coxeter 1931, pp. 209-210).

52-2
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6. DENsITY

These star polyhedra do not all satisfy Euler’s formula

which connects the numbers of vertices, edges and faces of a convex polyhedron (Coxeter
1948, p. 9). But they do all satisfy a suitably modified version. This involves the density
of the polyhedron, which is the number of intersections that the faces make with a ray drawn
from the centre in a general direction, counting two intersections for each penetration of
the core of a pentagram (Coxeter 1948, pp. 102-105), and counting certain retrograde
faces negatively.

Cayley (1859, p. 127) observed that every regular polyhedron {p, ¢} satisfies

aNy— N, +cN, = 2d,

where a is the density of the vertex figure {¢} (namely, 1 or 2 according as ¢ is an integer
or §), ¢ is the density of the face {p}, and d is the density of the whole polyhedron.

A further extension was discovered by Hess (1876, p. 15), who allowed for faces of several
kinds and for the possibility of an ‘overhanging’ edge, where the dihedral angle does not
enclose the centre of the polyhedron. Of the two faces meeting at an overhanging edge, it
is natural to regard the outer one as being ‘retrograde’, so that its penetration counts for
—1 in the computation of d. In fact, the appropriate generalization is

Ya—Xb+2c == 2d, (6-1)

where «a is the density of the vertex figure (which can be zero if it does not enclose the
circumcentre), b (for each edge) is 1 or 0 according as the edge is ordinary or overhanging,
cis the density of a face (with a minus sign if the face is retrograde), and 4 is the total density
(counting as many as three intersections for penetration of the innermost core of an
octagram {8} or a decagram {#2}) (Briickner 1goo, p. 165). Since we are dealing only with
polyhedra whose vertices are all alike, the first term 2a can always be replaced by aN,.
The foregoing conventions ensure that the total density 4 is the same as the ‘area’ d of the
basic Schwarz triangle, in nearly every case (but see the remarks in § 9 and the end of §10).

For instance, the ‘quasi-thombicuboctahedron’ r'{i}, derived from the Schwarz triangle

(2 £ 4), has 24 vertices, 24 ordinary edges, 24 overhanging edges, 18 squares, 8 retrograde
triangles, and satisfies the formula as follows:

24 —-24+18—8 = 2.5.

7. THE REGULAR AND QUASI-REGULAR POLYHEDRA p|q 7

Let us define a quasi-regular polyhedron as consisting of regular polygons of two kinds, say
{g}’s and {r}’s, each entirely surrounded by specimens of the other kind (Coxeter & Whitrow
1950, p. 422). The centres of two adjacent faces form, with either of their common vertices,
a triangle whose sides li¢ in planes of symmetry. By central projection on to a concentric
sphere, this yields a Schwarz triangle, say (p ¢ r). Hence any quasi-regular polyhedron
whose faces have distinct centres can be derived from such a spherical triangle by taking as
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vertices the images of one vertex of the triangle, namely, the one where the angle 7/p occurs.
Since the construction is not essentially altered when we replace (p ¢7) by a colunar
triangle, we shall assume (p ¢ 7) to be the smallest triangle in its set of colunars. We let

plar

denote the polyhedron formed by the images of the vertex P of a triangle PQR whose sides
PQ and PR are both <}, so that P is a vertex of faces {¢} and {r} whose centres are Q) and R
(rather than the antipodes of those points). If in addition the angles at P and Q are
supplementary, so that two colunar triangles are congruent, we seem to be confronted with
a choice between (say) ¢’ | ¢ 7 and ¢ | ¢’ r, where

¢ g =1

In this case the appropriate symbol is ¢’ | ¢ r with ¢’ <2< gq; for, if the triangle (¢’ ¢ 7) is
PQR with the obtuse angle 7/¢" at P, we have PR <{nr<QR.

£
2

[ \119x

|19,
[$; 8
%28
ﬁ

Ficure 7. The vertex figures of 3|35, 2|35, 3|35,

If r = 2 or 7 = ¢, the polyhedron p | ¢ 7 is not only quasi-regular but regular (as we saw

n §3): pl2a={ae0} plea=1{g 20}
In other cases, each vertex of p | ¢ 7 is surrounded by {g}’s and {r}’s, arranged alternately,
the number of each being the numerator of the rational number p. If ¢ <2, the symbol {g}
is to be interpreted as a retrograde {¢'}. This is natural, since a positive rotation through
2m/q has the same effect as a negative rotation through 2mu/q’.

Since every vertex of a Schwarz triangle is a vertex of a Mobius triangle, every quasi-
regular polyhedron has the same vertices as a convex regular or quasi-regular solid; e.g.

5
{;} and {":} are both inscribed in the icosidodecahedron {2} (Badoureau 1881, p. 133).
2

Inscribed in the dodecahedron {5, 3}, we find the two ditrigonal icosidodecahedra
3/3% and $£[35

(Badoureau’s Figs. 74 and 75; for the latter, see also Coxeter 1932, p. 517) and the
ditrigonal dodecadodecahedron 3055
(Coxeter 1939, p. 141). These three quasi-regular polyhedra have not only the same twenty
vertices but also the same sixty edges; therefore their vertex figures (figure 7) all have the
same six vertices. The long, medium and short sides of these irregular hexagons are vertex
figures of pentagons, triangles and pentagrams, respectively.
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The denominator 2 in the symbol £ | 3 5 indicates that in this case the vertex figure is
a polygon of density ¢ = 2. In the symbol 3 | § 5, the occurrence of § rather than § indicates
that the pentagrams are retrograde, and consequently all the edges are overhanging: b = 0.
Thus (6-1) (the generalization of Euler’s formula) has the following appearance in these
three cases:

3|83, 20—60+ 20+2.12=2.2;
3(85, 2.20—60+ 20+ 12=2.6;
3|%5, 20 —2.124+ 12 =2.4.

To illustrate the significance of 4, consider the last case. Here the density can be observed
directly by coming out from the centre along a pentagonal axis of symmetry. We penetrate
one pentagon, then five more, and finally the core of a retrograde pentagram; thus the

total number of penetrations is 1452 — 4.

Our d is not always equal to the E of Badoureau (1881, pp. 101-108), which is 8 for 3 | § 5.
In fact, d and E are different in all but the very simplest cases, such as those considered also
by Pitsch (1881, pp. 72-87), whose A agrees with both 4 and E.

On looking through Schwarz’s list of triangles, we see that we have not considered the
apparently valid symbols

4|44, 5|35, 5|35 3

35, 5|38
However, if we try to carry out the construction in these cases we merely obtain compounds
of familar polyhedra superposed in such a way as to have the same vertices and the same
edges, like the three coincident dodecahedra formed by ‘t{3, 5} (see the end of § 5). These
compounds are listed in the first five lines of table 6 (on p. 431), with negative signs for com-
ponents having retrograde faces. We give also the corresponding analysis of density, and
diagrams to show how the vertex figures collapse.

In theidentity 4 | § 4 = —{3, 4} 3{4, 2} (at the beginning of table 6) the italic 3 indicates
three distinct dihedra (corresponding to the three equatorial squares of the octahedron).
Later in the table we see 243 — 3(4,2) 123, 4},

where the ordinary 2 indicates two coincident octahedra.

8. THE SEMI-REGULAR POLYHEDRA f ¢ |7
The bisector of the angle /r of a Schwarz triangle (p ¢ r) meets the opposite side in a point
whose images are the vertices of a polyhedron which we denote by p ¢ |7, as in § 3. Since
the construction is not essentially altered when we replace (p ¢ 7) by its colunar triangle
(p' ¢’ 7), we shall assume (p g r) to be the smaller of these two triangles. ‘
If p and q are greater than 2, the faces surrounding any one vertex are, in general,

{0}, {2} {gh {21}

If p = 2 while r =2, we have a truncation (or, for » = 2, a prism):

2 q|r=tr g}
If r = 2, 3, 4 or 5, this is a single polyhedron of density 4, the faces at a vertex being

& g 2
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but if r = §, it splits, as we saw at the end of § 5. In the case of
23|3= {3> 5}+2{53 'g‘}:

analogy with the other cases would make us expect the vertex figure to be an isosceles
triangle with sides 1, 7, 7 (which we would mark 3, 5, 5 according to the convention at
the end of §1). This would indicate that each pentagonal face is surrounded by pentagons
and triangles alternately, which is absurd. Actually the sixty vertices coincide in twelve
sets of five, and the five isosceles triangles in different positions combine to form a pentagon
with an inscribed pentagram (repeated). This is indicated in table 6 by emphasizing one
of the five isosceles triangles.
If r<2 (with p = 2), we have a quasi-truncation

2q|r=1t{,q} (r'~14r1=1)
which is a single polyhedron if 7 = % or §, the faces at a vertex being again
@, g {2
But if r = § or £ (having an even denominator), we find further cases of splitting:
2914 (¢=3453) and  2¢[] (¢=3orf).

Two of these deserve special mention, because the isosceles triangles in their vertex figures
are obtuse-angled, indicating retrograde faces:

254 =—1{5,8+2(3,5}, 1l =—38+42 -12;

23|58 ——{(3,5+2(%,5), 19 = —7+2.3+20.
Here the total density 4 is obtained by adding the number of retrograde faces to the sum of
the component densities. In fact, the retrograde faces, being on the ‘far’ side of the centre,
are regarded as having passed beyond it.

If p = ¢, the bisector of the angle 7/r decomposes the isosceles triangle (p p r) into two
right-angled triangles (2 p 2r), so we get nothing fresh:

pplr=2p2r={2).
If r = 2, we have ﬁ9|2=r{‘z}, [)’q|2=r’{‘2} (p>2>p", ¢>2).

The faces at a vertex are {r}, {4}, {q}, {4},

with the squares crossing each other in the case of p’ ¢ | 2 (because the {p}’s are then retro-
grade). Thus the vertex figure is a trapezoid or a crossed trapezoid.

In particular, § 3|2 or r'@} may be identified with the famous one-sided heptahedron

or tetratrihedron (Badoureau 1881, Fig. 70) whose faces consist of alternate triangles of the
octahedron and three squares lying in planes through the centre, so that the vertex figure
is a ‘crossed rectangle’ consisting of two opposite sides of a square along with the two

diagonals. Since, in general, r{p } and r'l‘b } each have a face for every face and vertex of

{lq) }, it would be more strictly correct to use the symbol r'{ 3

} for the two-sided ‘covering
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surface’ of the one-sided tetratrihedron. Topologically, this covering surface, formed by

eight triangles and six squares, is homeomorphic to the cuboctahedron r{g} = {i}

However, we find it more convenient to let r’{ 3} denote the simple tetratrihedron itself.

Since some of the faces lie in planes through the centre, it is not much use trying to define
a ‘density’ for such a polyhedron.

Ficure 8
p
2r 2r F
r 2
q q
FicURrE 9 Ficure 10

Figure 8 (cf. Coxeter 1948, p. 111, Fig. 6-78) shows the partition of a trirectangular
spherical triangle (2 2 2) into fifteen (2 3 5)’s. The centre of the (2 2 2), being on an axis
of trigonal symmetry, is a vertex of the dodecahedron 3|2 5 (that is, a point of type 2 in
the notation of Coxeter 1948, p. 66, Fig. 4-54). It follows that the bisectors of the right
angles in the triangles (2 3 3), (25 5) and (2 4 5) meet the opposite sides in points of this
type. Hence the sixty vertices that we should expect to find for each of

A 0
rict, 2l r
{g 5> " 15
actually coincide by threes at the twenty vertices of a dodecahedron, and the thirty squares
are the faces of the compound of five cubes, {5, 3} [5{4, 3}] (Coxeter 1948, pp. 49, 100).
For further details, see table 6.

Turning now to the cases where p, ¢, r all differ from 2, and p< ¢, we make a further

classification according as p>2 or ¢’ <p<<2or p = ¢’
When p and ¢ are both greater than 2, p ¢ | r has, at each vertex, the polygons

{r}, {2}, g}, {2},

and the vertex figure is an ordinary symmetrical trapezoid (figure 9). The four actual

cases are
34|4 333, 35|55 33|%

When ¢’ <p<2, p q|rhas at each vertex

{v'y, {2}, g}, {2}
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with the {27}’s crossing each other (because the {'}’s are retrograde), and the vertex figure
is a crossed trapezoid (figure 10). The five actual cases are
34|4, $5(5 33|5 $55|3, 453

Most of these polyhedra were discovered by Badoureau (see table 7). Pitsch (1881,
no. XVIII, p. 87 and Plate II) described 3 §|3; but 3 £|5 or £ 3|5 (which has the same
vertices, the same edges, and some of the same faces) appears to be new.

Finally, when p = ¢’ <2, the faces at a vertex are

g {2 {gh {20,

with the {27}’s lying in planes through the centre; and the vertex figure is a ‘crossed rect-
angle’ consisting of two opposite sides of an ordinary rectangle along with the two diagonals.
If the remaining sides of the ordinary rectangle are vertex figures of {p}’s, so that

77 7r 7r
cos? —+cos? - = cos? o

we may describe ¢’ ¢ | 7 as consisting of the {g}’s and equatorial {2r}’s of {’Z } (Coxeter 1948,
pp- 19, 102). In this manner the octahedron {g} yields the tetratrihedron £ 3|2, and the

quasi-regular polyhedra of §§ 1 and 5 yield further quasi-regular polyhedra as follows:

3
{4}, 33[3 and %4]3;

{i} $3|5 and 25|5;

5.
), g813 and $5)3;

il 1

(Badoureau 1881, Figs. 97, 96, 116, 115, 119, 118, 121, 122).
A polyhedron is said to be orientable if a rotatory sense can be assigned to each face in such
a way that every two adjacent faces induce opposite senses along their common edge. In

and

nojeo

3

ol
wjot
cojor

the polyhedron ¢’ ¢ |7, formed by the {¢}’s and equatorial {2r}’s of {ZZ }, the {¢}’s adjacent

to a given ‘horizontal’ {27} are alternately ‘above’ and ‘below’ its plane, as we go round the
{2r}. Thus the senses of two consecutive {¢}’s are opposite. It follows that ¢’ ¢ | ris orientable

if and only if the {¢}’s of {‘z }, or of {g, p}, can be given positive and negative orientations

alternately. By considering all the {g}’s that surround a vertex of {¢, p}, we see that this can
be done if and only if the numerator of p is even (Coxeter 1948, p. 50, with p and ¢ inter-
changed), which means that p = 4. Hence, as P. du Val once remarked (in a letter dated
30 December 1932):

The only orientable polyhedron q' q | is the octatetrahedron $ 3 | 3.

Since Ny,— N, + N, = 12—24+8--4 = 0, this orientable surface is topologically a torus
on which is drawn a map of eight triangles and four hexagons (Coxeter 1939, p. 132, Fig. 13).

VoL. 246. A, 53
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For surfaces in ordinary space, the distinction between orientable and unorientable is the
same as the distinction between two-sided and one-sided. Thus all the other polyhedra
¢’ q|r are one-sided.

When 7 has an even denominator, the angle 7/r of the triangle (p ¢ r) is bisected by a
plane of symmetry of the spherical tessellation. The consequent dissection of the triangle is

(px2r)+(x q2),

T o cos ™ —1lcosT —cos T m .
where COS = —C05 5 =} (cos ; cosp) / cos - (8-1)

(Coxeter 1948, p. 113, with r; =r,). In this case p ¢ | 7 splits into

x|p2r+x'|q2r
(see table 6).

’
9. THE EVEN-FACED POLYHEDRA f ¢ 7| AND p 74

- Generalizing figure 5, we see that the in-centres of a network of Schwarz triangles
7) are the vertices of
(£ar) barl,

which is a single polyhedron whenever p, ¢, r are either integers or fractions whose denomin-
ators are odd, the faces at a vertex being

20} {29}, {21}

In particular, 234|, 235|, 23%|, 23%|, 2%5]

are the truncated cuboctahedron and its analogues:

3\ (3] L3\ (3| LB
qg G el t{-g—} gHE
as we remarked in § 5.

In two cases, 23 4| and 2 § 5|, the densities of the polyhedra differ from those of the
corresponding Schwarz triangles: 2 3 4| has density 1 and 2 § 5| has density 3, compared
with densities 7 and 9 respectively for the triangles (2 3 %) and (2§ 5). This discrepancy
can be traced to the fact that the vertex-figures are obtuse-angled, and that in 2 3 4|, for
example, all except the hexagonal faces are retrograde. It is possible to imagine a distorted
form of 2 3 4 | whose vertex figure is acute-angled and whose density is 7. As this is deformed
into 2 3 4| the hexagonal faces pass through the centre of the polyhedron and the density
becomes |7—8| = 1. Similarly, 24 5| has all faces except twelve decagons retrograde,
giving the density | 9—12| = 3. We note that 2 3 4| has the same density as the colunar
triangle (2 8 4), and that 2 § 5| has the same density as the colunar triangle (2 § 5).

If p = g = r, so that the triangle (p ¢ r) is equilateral, we have the regular polyhedron

pppl :{2p:3} (p: 2, %3 %) %)
If p = g==r, so that (p ¢ r) is isosceles, we have

tp, 21} (p=2),

t{p,2ry (p<2); (1)

Mrl=22r|p={
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e.g. 22| is the prism on a {2r}, and 3 3 2| or 2 3 3| is the truncated octahedron. The
remaining polyhedra p ¢ 7| (with odd denominators), namely,

344| and 3%5|,

are among those discovered simultaneously by Badoureau (1881, Figs. 137 and 148) and
Pitsch (1881, nos. IX and XI).

If just one of p, ¢, r, say r, has an even denominator, the face {27} has an odd number of
sides. These sides belong to {2p}’s and {2¢}’s alternately, which seems at first sight to be
possible only if p = ¢. The identity (9-1) still holds; but to achieve the proper density we
must regard the t{p, 2r} or t'{y’, 2r} as being described twice over. This duplication is the
clue to the proper interpretation of p ¢ 7| when p<gq. For, if the odd face {2r} is described
twice over, the sequence of {2p}’s and {2¢}’s surrounding it alternately will close up. But
then each edge belongs to both a {2p} and a {2¢}, as well as to the duplicated {2r}. We can
obtain a single polyhedron, formed by {2p}’s and {2¢}’s alone, by the simple device of
discarding all the {2r’s.

The arrangement of {2p}’s and {2¢}’s at a vertex is easily seen by superposing the right-

handed and left-handed vertex figures and then discarding the common side (marked 2r).
Thus
2r 2r 2r

= - 2r o+
ZAEN =R D
| i : i 2929 i 2q 2q

and the final result is a crossed parallelogram having two sides 2cos7/2p and two sides
2 cos m/2q. The four vertices of this crossed parallelogram belong also to a convex trapezoid

of sides 2cosm/2p, 2cosm/2r, 2cosm/2p and 2 cosw/2s,

where, by Ptolemy’s theorem,

w m o 7 o T
CO8 = COS — = COS8* =——CO8“ ——,

2r  2s 2q 2p
. 7r 77 7r 77
that is, ; 2(:os~2—; cos 5o = cos?,-——coslz. (9-2)

Thus the same crossed parallelogram could have been derived from

2q 2
%5 Ts %s ’ 1

and the same polyhedron could have been derived from p ¢ 5| by discarding the {2s)’s.
We obtain an appropriate symbol for the polyhedron (whose faces are {2p}’s and {2¢}’s)
by telescoping the two symbols p ¢ 7| and p ¢ s | to make

r
e

,
or .
v

By considering the convex trapezoid and crossed trapezoid that have the same vertices
as the crossed parallelogram, we see that this polyhedron has the same vertices and edges as

2r2s|p and (2r) 2s|q or 2r(2s)'|q.
53-2
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This result may alternatively be deduced from the decomposition of the spherical triangle
(p q ) by the bisector of its angle #/r. Comparing (9-2) with (8-1), we see that x = 2s.
The advantage of the first method is that it treats 7 and s symmetrically. The advantage
of the second method is that it explains why the s of (9-2) is always rational.
The actual cases are

5
233, 242’ 255, 3§§_,
2 2 2 2 |
4 5 =4
235, 2§é, 2§§, 3a§
2 2 1 1|

The first of these is the same as % 4 | 3, whose four hexagons lie in planes through the centre.

Therest are listed intable 7, where we see that all save the last were discovered by Badoureau.
3
In two cases, 24 2

)

used instead of 2, since the corresponding squares have fourfold and not twofold rotational
symmetry. The symbol 2 4 2| or 2 % 2| would denote a single octagonal or octogrammatic
prism. The present polyhedra are derived from an arrangement of three such prisms having
some square faces in common. The corresponding Schwarz triangles may similarly be
written (24 %) and (24 4), since they are to be considered as occurring in the cubic
spherical tessellation and not the fourfold prismatic tessellation.

There are other cases in which the same spherical triangle occurs in two or more different
spherical tessellations: for example, (2 2 2) occurs in both the cubic and the icosahedral
tessellation as well as the diagonal tessellation. But in all other cases the present construction
can be shown to lead only to ‘compound’ polyhedra.

Referring to table 5, we see that the only remaining symbols p ¢ r | are

, the symbol 4, although not in its lowest terms, has been

3
4 2

L 288 248, 238 3%

[5G
pojot

5/, 3%

rojot

where two of p, ¢, r have even denominators. The splitting in these cases is shown in table 6.

10. THE SNUB POLYHEDRA |p ¢ 7

We construct | p ¢ r by regarding the spherical triangles (p ¢ 7) as being alternately white
and black (see § 3, especially figure 6). The three white triangles that surround a black one
contain corresponding points forming an equilaterial triangle which we may called a
‘snub face’ of | p ¢ 7. One of these three white triangles is derived from another, sharing
with it the vertex P (say), by a rotation through 27/p about P. Ifthis rotation takes the chosen
point C” in the first triangle to C” in the second, we have an isosceles triangle C"PC”
whose base C"C” (opposite to the angle 277/ at P) is one side of the snub face. Solving this

isosceles triangle, we find .
sin PC” sinl; = sin $CG"C".

If Cis the corresponding point in the black triangle, then PC: = PC”. Hence, by considering
in turn the other sides of the snub face we deduce

sin PC sin% = sin QC sing =sinRC sin—g. (10-1)
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Thus the sines of the distances of the points C, C’, etc., from the vertices of the corresponding
triangles are inversely proportional to the sines of the angles at those vertices (Coxeter
1940, p. 393). (Of course C, being in a black triangle, is not a vertex of the | p g r.)

The points in the three white triangles are the images of the point C in the black triangle
by reflexion in the sides of the black triangle, or in the planes containing these sides. The
plane triangle formed by the three images (i.e. the snub face) is clearly similar to the triangle
(of half the linear size) formed by the orthogonal projections of C on these three planes.
Accordingly, we can describe C as the point whose orthogonal projections form an equi-
laterial triangle. We obtain a natural co-ordinate system by letting x, y, z denote the straight
distances of G from the three planes. These, then, are the lengths of three lines CX, CY, CZ,
such that '

LYCZ = w—%, L7CX = nﬁ, LXCY = w—g.
The condition for the plane triangle XYZ to be equilateral is clearly

y?+22+42yz cos—;I = 224 x2 - 2zx cos ;1 = x2+y%+ 2xy cos —;,

that is, x2—ayz = y? —bzx = 22 —cxy,
mo m m

where a=2cos~, b=2cos—, ¢=2co0s-
P q r

(not to be confused with the a, b, ¢ of §6). Eliminating z, we obtain for x/y the quartic
equation (1—02) x*+ (a—be) bx*y +2(abc—1) 22+ (b—ac) axy3+ (1 —a?) y* = 0. (10-2)

These two methods for locating a vertex of | p ¢ r have been mentioned for their intrinsic
interest. But the actual enumeration of snub polyhedra is more easily accomplished by
means of the vertex figure. In general, the faces of | p ¢ r consist of

{pys or {p'¥s, {gfs or {g¥s, {Ffs or {}s,

each entirely surrounded by triangles; but if one of p, g, r is equal to 2, the consequent
digons can be ignored, and two of the snub faces have a common side. Thus the vertex
figure is a cyclic hexagon (or pentagon, or quadrangle, or triangle) of sides

a, 1, b, 1, ¢, 1.

When any of 4, g, r are less than 2, the corresponding ‘negative’ sides proceed round the
circle in the reverse sense, indicating retrograde faces.

Let the sides a, b, ¢, 1 of the vertex figure subtend angles 2a, 2, 2y, 28 at its centre, and let
p denote the radius of the circle in which the vertex figure is inscribed. Then

2psing = a, 2psinf =05, 2psiny=¢, 2psind=1, a+f+y+30=n.
Eliminating «, £, y, §, we obtain for p the equation
[(9—5)2—24¢—du] B+ [B5(4+1) - (35 +£) +9(u—12)] pb
+[6(18—u) —(27+5) (2+8)] p*+ (9t +u—12) p2+ (1 —1) = 0,

where s=a’+b%+4c% t=abe, u=>b%?+c%?+a2h?.
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Writing p? = 1/(2—X), so that
X=2—p2=2—4sin%2 = 2cos 24,
we obtain the more elegant equation
(1=t Xt (4—t—u) X34 (3—s) (2+18) X2+ [(1—0) (4—s+18) —3(s—u)] X
+[(8—s) (1—s—2¢) —2(1 —s+u—2)] = 0. (10-3)
The antiprisms 5{2

p
and (10-3) reduces to [(X+1)2—a?]? = 0,

} and s’{;} are given by setting b = ¢ = 0, so that s = a2, t = 0, u = 0,

whence X = —1-+aq, and p?=1/(3Fa).

This is easily seen to be the squared circum-radius of a trapezoid, or a crossed trapezoid,
of sides 1, 1, 1, a. The crossed trapezoid is possible only if a<<1 (so that p>%). Hence,
although the ‘first’ antiprism

2
22p = s{ }
22p=s;
occurs for every p>2, the ‘second’ antiprism
2
22" = s’{ }
22y =5

occurs only for 2<p<3 (thatis, 2>p">$).

color hIlUL

Ficure 11. The vertex figures of |24 5 and |2 § 5.

Since s, ¢,  are unchanged when two of g, b, ¢ are reversed in sign, we have one equation
(10-3) for each set of four colunar triangles (¢ ¢ 7); e.g. the triangles
(2%5), (285), (2%2), (232)
for which s = 3, ¢t = 0, u = 1, yield
X44+3X3—5X+2=0.

This equation has just two real roots:

0-81807 55760 and 0-4739876869.
The corresponding values of p = (2—X)~* are

09198248671 and 0-8095076943.

Drawing circles of these radii, we find the two possible vertex figures shown in figure 11.
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Since the latter has retrograde pentagrams, the appropriate symbols for the two polyhedra

are |25 and |2%5

(Lesavre & Mercier 1947, nos. 4 and 5; see also Coxeter 1947).
When p = ¢ =7, equation (10-3) becomes
[(14+a+a?) X+ (1—2a—2a*)] [X+(1+a)]® = 0.
The simple root X = (—1+2a+24?)/(1+a+a?), implying p? = (14+a+a?)/3, yields
| p p p; for instance, 1222 = (3,3).
The triple root X = —(1-a) yields | p” p’ p. The splitting of these (withp =$or 2, a =71
or —7) is indicated in table 6.

In all the remaining cases, at least one of a, b, ¢ is 41, so that u = s+#*—1, and the
equation for X reduces to

(1—8) Xt 4 (5—s—t—£2) X3+ (3—s) (2--) X2+ (1 —£) (1 —s—26) X+ (3—5) (1 —5—2f) = 0,
which factorizes thus:
[(1—8) X+ (3—9)] [X°+ (2+8) X2+ (1 —s—20)] = 0. (10-4)

The linear factor is most easily explained by taking ¢ = —1 (that is, p = $), so that three
sides of the vertex figure coincide, leaving a trapezoid of sides b, 1,¢, 1,or (if b = 0) a triangle
of sides 1, ¢, 1. Then

’ (1—8) X+ (8—s) = (1+bc) X+ (2—52—¢?),

in agreement with the value
p% = (14bc)/(2+b—c) (2—b+c)

for the squared circum-radius of such a trapezoid. The actual cases (| 2 2 3, etc.) are
indicated in table 6.
When a = 1, the cubic factor of (10-4) yields the equation

X3+ (2+bc) X2—(b+c)2 =0, ‘ (10-5)
3 2
which has only one real root if (2—3|:bc) <(b;—c) . The actual cases (with p = 3) are

exhibited in table 4.
|23 4 and |2 3 5 are the snub cube and the snub dodecahedron, as we saw in § 3.
|233%,|233%, |2 %35 are the analogous figures described by Lesavre & Mercier (1947,

nos. 2, 3, 1). »
224,283,835, /355, |344%, |3 35 all split as indicated in table 6.

In the case ¢ = 2, r = 5, the root X = 0 must be discarded, since a circle of diameter

2p = /2 cannot contain a chord of length ¢ = 7.

The remaining polyhedra

1333, (835 (335, [3%%

are new. The first two of these, being of the form | p pr, are the only non-trivial snub
polyhedra possessing a plane of symmetry. Besides the usual twelve pentagrams and sixty
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‘snub’ triangles, they have each forty more triangles, lying by pairs in twenty planes (the
face-planes of an icosahedron).

Similarly, | 3 § £ has twenty-four pentagrams, lying by pairs in twelve planes (the face-
planes of a dodecahedron). The same sixty vertices may be regarded as belonging to
another | 3 § §, enantiomorphous to the given one. The roles of the two types of pentagram
are interchanged (see figure 12). :

In two cases, |2 § § and |2 § §, the vertex figure is a pentagram (regular or irregular)
and the snub faces are retrograde. The density is now given by subtracting the & of table 5
from the number of snub faces (cf. p. 418). Thus the density of the ‘quasi-snub tetrahedron’

l 2 % % = {39 %}
is not 5 but 7 = 12— 5, while that of
1243
(Lesavre & Mercier’s no. 1) is not 23 but 37 = 60 —23, agreeing with (6-1) in the form
2.60—150-+80-+2.12 = 2.37.

Similarly, the density of the new polyhedron

335
2272

is not 22 but 38 = 60— 22, agreeing with (6-1) in the form
2.60—120-+100—2.12 = 2.38.

The density of each of these polyhedra is the same as that of one of the reflex colunar
triangles. Thus |2 § § has the same density, 7, as (% 3 3). Indeed, we might consider the
polyhedron as being derived from this triangle in the first place. In the vertex figure the
snub faces would then be considered to have the same sense as the other triangles, instead
of being retrograde, but the symbol 2 would represent a complete negative revolution about
the centre, so that the vertex would be surrounded altogether just once. The polyhedron
might equally well be derived from the triangle (2 3 £), whose density is also 7. In the
vertex figure the symbol  would denote a revolution through —2n about the centre.
Similarly, |2 £ could be derived from any of the reflex-angled triangles (23 %), (2% %)
and (2 3 §), each of which has density 37; and | §  § could be derived from either (3 3 )
or (3 £ %), each of which has the density 38.

As may be seen from figure 91 and figure 120, plate 5, | §  § contains groups of ten edges
which appear to intersect in a point. That they really are concurrent may be proved as
follows. Each group of ten consists of five left-handed and five right-handed edges. Each
left-handed edge is the reflexion of each right-handed edge in a plane of symmetry and so
must intersect it. The two groups must therefore belong to the two systems of generators
of a quadric surface. But it can be seen that two adjacent left-handed edges, for example,
belong to the same vertex figure, and must therefore intersect. Thus the quadric surface
degenerates to a cone, through whose vertex all the edges pass.

11. A POLYHEDRON HAVING EIGHT FACES AT EACH VERTEX

As we saw in § 10, the pentagrams of a given | 3 § § belong also to another, derived by
reflexion in a certain plane (represented by the vertical line in figure 12). Three sides of
the vertex figure are three sides of a square, whose fourth side belongs to the reflected vertex

Vor. 246. A. 54
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figure. Hence the 160 triangles of the two enantiomorphous | 3 § &’s are the faces of twenty
concentric octahedra, and those faces of one octahedron which belong to one | 3 § £ consist
of one ‘special’ face and its three neighbours. Each of the twenty octahedra has one pair
of opposite faces each belonging to the same |3 § 3§ as all its three neighbours. In other
words, the octahedron has two opposite ‘special’ faces, and its eight faces fall into two con-
nected sets of four, each set belonging to one | 3 § 2. The forty ‘special’ triangles, along

!
l
i
i
I
|
i
|
!
!
!
&
t
i
i

'
Ficure 12. The vertex figures of the laevo and dextro varieties of |3 § 5.

!
f
I
i
1

i
Ficure 13. The vertex figure of |53 3%.

with the sixty equatorial squares of the twenty octahedra and the twenty-four common

pentagrams of the two | 3 §§’s, form a single polyhedron whose vertex figure is shown in

figure 13.
This is the only known polyhedron that has more than six faces at every vertex. It is

also interesting to note that the faces of all three kinds occur in coplanar pairs: twelve pairs
of pentagrams, twenty pairs of triangles and thirty pairs of diametral squares. If the faces
at a vertex are taken in succession, the four squares occur alternately with the other faces.
Moreover, the squares have no rotational symmetry; the only transformation (besides the
identical transformation) which transforms any square into itself is the reflexion in the
centre of the polyhedron. Analogy suggests that the squares be regarded as ‘snub’ faces,
so that an appropriate symbol for this strange figure is

3334
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12. CONCLUSION

Using a moderately systematic procedure, we have obtained the five Platonic solids, the
thirteen Archimedean solids, the four Kepler-Poinsot star-polyhedra, the prisms and anti-
prisms, and fifty-three other uniform polyhedra. These, with their faces and vertex figures,
are shown in our plates (figures 15 to 128) and described in table 7. (Figures 15 to 92
follow approximately the order of table 7.)

The number of vertices, say N,, is obvious from Wythoff’s construction. The number of

edges, say NV, is given by 2N, = N, N,
1 — 4'0+'01»

where N, is the number of edges at each vertex, or the number of vertices of the vertex
figure. Similarly, the number of faces having 7 sides is given by

niN, = Ny Ny,

 where N, is the number of such faces at each vertex, or the number of sides of the vertex
figure having the appropriate length (table 3). The density 4 is given by (6-1), and agrees
with table 5 except in the cases explained at the end of §§9 and 10. We do not attempt to
assign a density in those cases where some faces pass through the centre, nor in those where
the vertex figure is a crossed parallelogram. '

In the next column of table 7 (after the density d) we give the circum-radius for edge 2,
which is cosec 4, where 2¢ is the angle subtended by an edge at the centre. Since the

circum-radius of the vertex figure is

p = cos¢
(Coxeter 1948, p. 22) we have
cosec g = (1—p?)~4

It is interesting to observe that, whenever the squared circum-radius cosec?¢ is a quad-
ratic surd m-+n,/2 or m~+n,/5 (where m and n are rational), there is a conjugate polyhedron
in which # is replaced by —n. This corresponds to an interchange of octagons and octa-
grams, or pentagons and pentagrams, or decagons and decagrams. Conjugate polyhedra
5
5
so that cosec?¢ is rational (usually an integer). However, this kind of correspondence is
not universal; it breaks down for the snub polyhedra.

It is remarkable that we have obtained all but one of the known uniform polyhedra by
applying WythofI’s construction to the various Schwarz triangles. The existence of | § £ 3
indicates that there is no general reason for the restriction to triangles. We can only say that
higher spherical polygons would have to satisfy various conditions which are almost always
incompatible. In support of our contention that our list (table 7) is probably complete,
we may mention that it includes all the uniform polyhedra previously obtained by other
authors, using different methods.

The most systematic of these earlier constructions is that of Badoureau (1881, pp. 104~
158), who considered each of the Platonic and Archimedean solids in turn with a view to
seeing whether any star-polyhedra can have the same vertices. We may summarize his
results (and some similar cases where one star-polyhedron is inscribed in another) by

54-2

are isomorphic (Coxeter 1948, p. 106). Some polyhedra, such as { }, are self-conjugate,
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remarking that the polyhedra listed in each of the following lines all have the same vertices;
those in each of the subgroups (separated by semi-colons) have also the same edges:

4123, 332
234, 333, 44|3.

23)4; 24]2, 34[4 243
2
23|4; 34|2, 344, 24}%.
2
5023, $|25; §(23, 5|23
3125; 3|25 3(35 3[35, 3|%5.
2135, $3(|5 355 2|§5 3§33, $5(3; 233 £3|3 333

23|5; 35|% $5|3, 3%
23]%; 3%|5, 3%]3, 35

28155 3312 333

[\o]
cojor
rojor tojeo WjoT rojee o 9IS pojen pojes .

25|%;, 35|2,

nojeo
)4
N
[\
W14

5
2512, $5]3, 23_;.
4

The polyhedra described by Pitsch (1881, pp. 86, 87) are, in his order of Roman numerals,
292, 224 34|14 355 — 285 384
%5I27 3%4|> 23%[) 3%51: 2%5|> 23%[) 23!%’
2155, 2|33 25|55 3%|3, 2|3, 23|54 3(3%

(One is tempted to identify his V with r’{::} = 3 %|2; but actually he described instead
2
r{{:} = 3 3|2, which splits!) Many of these polyhedra were known to Briickner (19oo,
2
pp. 122—202). His illustrations, and those of Badoureau, are listed in table 7. The poly-

hedra of Lesavre & Mercier (1947) are, in their order,
284 1233 233 (286, 235

Thus there remain seven polyhedra which are announced here for the first time:

-

Some of these polyhedra are ‘edge-stellations’, that is to say, their edges may be obtained
by producing the edges of other polyhedra. Thus, as is well known, the regular polyhedra
5|2 % and 3|2 § are edge-stellations of 3 | 2 5 and §| 2 5 respectively. Itis less obvious that
$ 2|4 is an edge-stellation of § 5|5 and that 3 5| % is an edge-stellation of $ 5|5. These
last two relations follow from the property that, when the edges of the decagons are pro-

1333 3305

3

wlon
pojov
pojco
pojeo
nojeo
cojor
ojon
.

3
3%5, 35§, |3 3 |
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duced to become edges of decagrams, the edges of the pentagons become edges of penta-
grams (the edges of the stellated polygons being in the same ratio to the edges of the original
polygons). It is clear, also, that any truncation containing two octagons or two decagons
at a vertex can be stellated to give another truncation with two octagrams or two decagrams
at a vertex. Thus 234, 25|% and 2 3|$ are edge-stellations, respectively, of 2 3|4,
23|5and 2 §|5. (These relations can readily be appreciated from the wire models shown
in plate 2.)

We may say that one polyhedron is verfex-inscribed in another if it has the same vertices
but longer edges, and that it is edge-inscribed in another polyhedron if the latter is one of its
edge-stellations. Then combining our results with those of Badoureau mentioned above
we have the following ‘chains’:

5|24 isvertex-inscribedin £[25
2125 isedge-inscribedin 3|23
3|24 isvertex-inscribedin 3|25

3|25 isedge-inscribedin 5|2 %

etc.

and %$%|% isvertex-inscribedin £5|5
25|56 isedge-inscribedin  §%|%
etc.

Both these chains are cyclic and so infinite. We have also a short chain in the octahedral

group:
34|% isvertex-inscribedin 234

23|4 isedge-inscribedin  23|4%
23|% isvertex-inscribedin $4]4
and the following remarkable chain in the icosahedral group:
35|% isvertex-inscribedin 235
2 3|5 isedge-inscribedin 253
25

§ is vertex-inscribedin $ 5|5

$5|5 isedge-inscribedin 3 %%

3%|% isvertex-inscribedin 2%|5

25|5 isedge-inscribedin 233

23|% isvertex-inscribedin 335
"This last chain includes all the truncations of the icosahedral group which contain decagons
or decagrams among their faces. One may imagine the eight polyhedra inscribed each

inside the next, all the decagons and decagrams lying in the same set of twelve planes. The
arrangement of the polygons in one of these planes is shown in figure 14.
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Our notation extends readily to tessellations filling the Euclidean plane. Eleven simple
tessellations having finite, non-overlapping faces (analogous to the Platonic and Archi-
medean solids) were described by Kepler (1619, pp. 116-120). Many other ‘assemblages’
were discovered by Badoureau (1881, pp. 163-170). To these we have added four (‘con-
jugate’ to Badoureau’s Figs. 61, 65, 66, 67, which are Kepler’s S, V, N, M) and one other:
the snub tessellation |4 4 co. Our list, which we believe to be complete, is given in table 8.

/
X
N

In most cases there are infinitely many faces of each kind; but 200 |2 and |2 2c0 have
each just two apeirogons {c0}, bounding a strip of squares in the former and of triangles
in the latter. Alternate strips of these two kinds are used to form the two nameless
tessellations at the end of the table.

TABLE 5. THE SCHWARZ TRIANGLES

density density
1 (233), (234), (235) 16 333
d (2 2 n/d) 17 (2%%
2 (333), (344), (355), (333 18 $3%), 349
3 (283), (285) 19 (23%)
4 (384), (3%9) 21 (223
5 289, (234 22 (339
6 $§38), (249, (335), (259) 23 (289
7 (23%), (239 26 (339
8 (325) 27 (2239)
9 (2595) 29 (232
10 (3%%), (325 32 (329
1 28%), (2%9) 34 (349
13 (239%) : 38 (322
14 3449, (3%d, 332 42 3i9
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TABLE 6. DEGENERATE CASES OF WYTHOFF’S CONSTRUCTION

compound

4)34=—(3, 4+3(4, 2
5/%5=—{3, 5}+{5, §}
5138=03,8}-{3,5}
5135=(3, 545, 3
§138={3,8+{5 5}
2lE=30n.3) (r=3,59

23|5={3,5}+2{5,%

24|3=3(4,2+23,4
253 =—{5, §+2(3, 5

2%|3=1{3,51+2(3,%

3§|2=(3[39)+5(4,3)
$5|2=(3|%5)+5{4, 3}

$5]2=—(3]35)+5{4, 3}

density

2=—1+3

2=—143

4=1+3

10=7+3

3,3, 21

T=1+2.3

5=34+2

11=-3+2+12

17=3+2.7

19=—-7+2.34+20

7=2+5

9=4+5

11=-6+5+12

vertex figure

/
N
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$518=—13,5}+3(5,%}

33|E=03,8+3{8 5}

3314=33,8-4,5

£5(3=(3[32)+(}[35)

3312=(3135)+(3|55)

35[2=(338)-(339)

les

T

I

(33]5)+(25]5)
2 §}+6{10, 2

e, 0]

233]=5{4,31+2(3[35)

243|=56(4,3-2(3135)

28%1=-56{4,31+2(3(33)

§23[=(319)+(32(3)
=2{§}+6{l§, 2}

. M. COXETER AND OTHERS ON

TABLE 6 (cont.)

6=3+3

8= —1+3.3

16=7+3.3

18=3.7-3

8=246

10=6+4

10=2—-4+12

8=2+4+6 10

njon

16 =2.3410 6

17=5+2.6

21 =5—-2.4+2.12

29 = —~5-+2.2+30

32=2.7+6.3




compound

$44=303(39)
148=-3(335)

3
EX q=2:q} (¢=38,4,5,%)

|228=2(3,2)

1233=3(3,3}

|2 § 4=2(3, 4} +3(4, 2

2
3 —_—
1335= 63{5}

= 3{3’ 5} +{5, %}

|$35=(3[38)+(§|35)

1225

s
I

1288=2{(3, 2} +{§ 5}

|333=06s{,

— 33,1 -5 5)

1323=—4{3,5}+2(5, 3}

VoL. 246. A.

2{3, 5} —{5, £}

TABLE 6 (cont.)
density

6=3.2

42 =—3.6+60

2,2, 2, 14

5=243

6=3+3

8=2+6

11=2-3+12

17=2.7+3

18=6.3
=3.7-3

26 =—4.7—-2.3+60

38=—442.34+60—-2.12

UNIFORM POLYHEDRA

RS A

433

vertex figure

N
&
5

55
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Frcures 15 to 32. The Platonic and Archimedean solids.
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FiGUREs 33 to 44. 2%[2,|227%,[22%; £3]2, $3(3, §4[4: 3|35, 35[3,[33%;
3505, 5]24 §[25.
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5, 35]3.
56

5
3

5; 344, %4(3, 3%4]; 3|

$5]2 (2%

» 23|55

3
2

FiGUREs 45 to 54. 2|
Vor. 246. A.
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Ficures 55 to 60. 33|5, 35(3; 355|, [355; $4(2, 247
2
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68

Ficures 61 to 68. 3|35, 55(3; 23(5, 352, 55[5; 23(% 23%|, 3|25,

o pojes

56-2
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; 1235, 2535,

pojen o

Ficures 69 to 74. §|23, 2|8%; 233,23
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; 23[8 3812 2315 3E%

3
FicurEes 81 to 86. 25] 3, 2%2
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89

Ficures 87 to 90. 233, |235; 2
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NOTES ON THE PLATES

Plates 1 to 6 illustrate models of all the non-convex uniform polyhedra, apart from the
Kepler-Poinsot polyhedra. Only the sides of the faces are shown, the faces themselves
and their subsidiary intersections being omitted. Some of the models, therefore, represent
more than one polyhedron; for example, figure 107, plate 3, represents either 3 5|2,

$5|50r25 % .
2
The models are constructed of galvanized iron wire (‘garden wire’), with the exception
of two, figures 120 and 128, which are of cotton thread strung in a wire frame (the frame is
just visible in the photographs). No solder has been used in the wire models; for the most
part the wires are simply sprung together, although in some cases they have been secured
by twisting at the vertices. Where two edges theoretically intersect the corresponding

wires are kinked. The two polyhedra | § $and | § § 3 3, of which the models are of cotton,
are the only cases in which more than six edges may intersect in a point. ‘



Coxeter et al. Phil. Trans. A, volume 246, plate 1

Quasi-regular and semi-regular polyhedra.

94. 2|34, $3|3, $4|3. 95. 2[35

97. 2|55, 25|83, 25|3.

(Facing p. 450)
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Ficures 99 to 104. Semi-regular polyhedra.
99. 27|2. 100. 2 3|4%. 101. 2 §| 5.

102. 2 [ 53. 103, 233, 104. 2 3|3
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Ficures 105 to 110. Semi-regular and even-faced polyhedra.
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Ficures 111 to 115. Semi-regular polyhedra.
Frcure 116. Semi-regular and even-faced polyhedra.
¢ 994
112. 23%].

115. 2335].
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Ficures 117 to 122. Snub polyhedra.
118, [222,

121, |23 5.
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Ficures 123 to 128, Snub polyhedra.
124, |233.

127. |35 5.




