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Preface.

A “preliminary note” on this subject has appeared under the title
Wythoff’s construction for uniform polytopes1). 1 have divided the present
work into three parts (of which the first appears now), the emphasis being
on space of three dimensions, four dimensions, and six to eight dimensions,
respectively. (Nothing special happens in five dimensions!) The treatment
is elementary and ab initio; this inevitably involves giving an improved
version of some earlier work. §1.8 is entirely new.

§1.1.
The idea of a uniform polyhedron.

A study of the regular and Archimedean solids makes it seem desirable
to invent a name for the class of polyhedra which have the following two
properties:

(i) the faces are regular polyg9ns,

l‘Somcfiﬂ‘eS/,-”(ii) there is a group of mgtri{ns (with or without reflections) which is
transitive on the vertices.

1) Proc; London Math. Soc. (2). 38 (1935), pp,7327__339_
pe— A\l
= "Twelve Geomefeic Essays) Chapter 3.
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Let us call these uniform polyhedra. In the present work we restrict
consideration to polyhedra which are strictly convex. Kepler ?) showed that
the uniform polyhedra consist of:

(a) the five regular solids,

(b) the thirteen Archimedean solids (or semi-regular solids of the first
kind),

(c) the prism, whose faces are two n-gons and n squares (n = 3.5. 6, .. .;
we exclude n = 4 because the cube has already been counted).

(d) the antiprism, whose faces are two n-gons and 2 n equilateral triangles
(n =4,5,6, ...; we exclude n = 3 because the octahedron has already been
counted).

In all but two cases (the dodecahedron and the icosidodecahedron), the
order of the group (ii) may be taken to be equal to the number of vertices.
The edges of the polyhedron, suitably coloured, then constitute a ‘“‘colour
group’ 3). (See the Appendix.)

It is convenient to say that a polyhedron is edge-reflexible if all its edges
are perpendicularly bisected by planes of symmetry. Insuch cases the group (ii)
may be taken to be generated by reflections in these planes. For instance,
the edges of the cube are bisected (in sets of four) by three planes, reflections
in which generate a group of order 8. Again, the edges of the tetrahedron, and
likewise of the octahedron, are bisected by six planes, reflections in which
generate a group of order 24. (This time we are using a group whose order is
greater than the number of vertices.)

It follows from the above definition that the vertices of any edge-reflexible
polyhedron can be constructed as the set of transforms, under a group gene-
rated by reflections, of a single point. The actual cases may be very attracti-
vely exhibited by means of the polyhedral kaleidoscope invented by E. Hess 4).
This consists of a set of three plane mirrors, suitably inclined to one another.
In a darkened room, the “‘single point” can be suggested by a candle flame;
the vertices of the polyhedron are than seen as a multitude of such flames.

It happens that the only uniform polyhedra which are not edge-réflexible
are the snub cube (Kepler's cubus simus), the snub dodecahedron, and the
antiprisms. These can be treated somewhat similarly, using rotations instead
of reflections. The two snub figures have no planes of symmetry at all, and
consequently occur in dextro and laevo varieties.

2) Opera omnia, 5 (Frankfurt, 1864), pp. 116 —126. For a more rigorous treatment,
see Catalan, Journal de I’Ecole Polytech. 41 (1865), pPp- 25—32.

%) Cayley, Proc. London Math. Soc. 9 (1878), pp. 126 —133; Amer. Journal of Math.
11 (1889), pp. 139—157.

) N. Jahrbuch fiir Mineralogie 1 (1889), pp. 54—65.
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§1.2.
Groups generated by reflections.

A single reflection generates a group of order two. denoted by [1]. TW.O
reflections generate a group which is infinite unless the angle between their

: ) . d: -
planes 1s commensurable with z. If the angle is —,; where d and n are co
prime, the group is of order 2 ». denoted by [n]. In fact, the same group 18
generated by reflections in two planes making an angle %, and then the

angular region between the planes serves as a fundamental region. The
svmbol [ oo ] naturally represents the infinite group which is generated by
reflections in two parallel planes.

The group generated by reflections in any number of planes is equally
well generated by reflections in these planes and all their transforms. If
(as we shall always suppose) the group is discrete, the whole set of planes
effects a partition of space into a finite or infinite number of congruent (or
symmetric) regions, and the group is generated by reflections in the bounding
planes of any one of the regions. Let these bounding planes be denoted by
P1: P2: ... (By an argument due to Pdlya 5) there cannot be more than six

of them, in ordinary space.) Let ;L-l denote the (internal) angle between p,

wy

and p,. Then n,, is an integer. since otherwise the region would be subdivided
by transforms of these planes. The case when p, and p, are parallel may be
included by allowing 7,, to be infinite.

Let R, denote the reflection in p,. Clearly
(1. 21) R:=1, (R,B)" =1

By the following argument, due to Witt ), the region enclosed by the planes P.
is a fundamental region, and the above relations constitute an abstract definitioh,
the period of R, R, being specified for every pair of the planes except such as
are parallel. For instance, the dihedral group [n] is defined by

R? = R} = (R, R,))" =1,
while the analogous infinite group is the free product of two groups of order two -
R = RE =1,
%) Annals of Math. 35 (1934), p. 594.

¢) Compare Burnside, Theory of Groups (second edition, Ca

mbrid
(§291); Cartan, Annali di Mat. (4) 4 (1927), pPp. 215, 216. w8, 1911), p. 28
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Let W denote the region enclosed by the planes. so that WER, is the
neighbouring region derived by reflecting in p,. A typical boundmg plane
of WR, is p, R,. The region derived from W R, by reflection in p, B is
WR, R since thls region and W R,, with their mterface p. B,, are derlved
from W R and W, with their 1nterface p.. by applying the reflection R,
Similarly, the boundmu plane p; R, B, of this region leads to WR.R R
Thus the region WS, derived from V\ bx applying any operation S = R R

. R,R,, can be reached from W along a path which passes through the
consecuti\ ely neighbouring regions

WR,WRR,...WR,;--- R E,.

It remains to be proved that, if WS is W itself, then S = 1. In this
case the path from W to WS is closed, and we consider w ‘hat happens to the
expression R, R;... R, R, when this path is continuously shrunk to a
point. If at any stage the path goes from one region into another and then
immediately returns to the region it has just left, this detour may be eliminated
by cancelling a repeated R, in the expression, in accordance with the relation
R? = 1. The only other kind of change that can occur during the shrinking
process, is when the path momentarily crosses an edge (common to 2u,,
regions). The expression will then be simplified by applying the relation
(R, Rz)"“ = L

The shrinkage of the path thus corresponds to an algebraic reduction of
the expression R, B; ... R, B, by means of the above relations. Since the
path can be shrunk right down to a point, the expression is equal to 1; and
since this result is an algebraic consequence of (1. 21), those relations suffice
for an abstract definition of the group.

An analogous argument proves the same result for any simply-connected
space of ! dimensions, the planes being replaced by hyperplanes, and the edges.
by (I — 2)-spaces.

§1.3.
The representation by graphs.

It is convenient to represent each generating reflection (or each mirror
of the kaleidoscope) by a dot, and to draw a line (or “link”) between two-
dots whenever the corresponding mirrors are not perpendicular, marking

such a link with the number n,, to indicate the angle -~ (n,, =3). In
n

uv

this manner the group (1. 21) is represented by a grapk of dots and (marked)
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links. Owing to its frequent occurrence, the mark 3 will usually be omitted
(and left to be understood). Thus the group [n] is denoted by

e when 2 =1,
® evwhen »n =2
(1. 31)

o—eo when n =3,

&—~—owhen 2 >3 (including n = o).

The disconnected symbol when n = 2 exhibits the fact that the group [2].
generated by reflections in two perpendicular mirrors, is the direct product
[1] X [1] (that 1s, the four-group).

When, as in these cases, all the mirrors are perpendicular to one plane,
the group may be considered as operating in that plane, with one-dimensional
mirrors. (The groups [1] and [ o ] may even be regarded as operating in a
line, with one or two points for mirrors). The remaining two-dimensional
groups (which can be visualized by using three or four vertical mirrors) are
infinite, and may be enumerated by considering, as possible fundamental
regions, the various plane polygons whose angles are submultiples of .
There are four such groups with finite fundamental regions:

oo oo

(1. 32) A — oo oo e e R

or, in a convenient alternative notation,
A, [3,6], [44], [e]X[e]

(In the last case the fundamental region isa rectangle.) Thegroup o= o o
or [1] X [ ]is not interesting, since it is infinite without having a finite
fundamental region; in other words, it is an infinite group of a kind that has
no finite analogue.

In all other cases with three mirrors, the planes are concurrent, and the
group may be regarded as operating on a sphere centred at the point of con-
currence; that is, we reflect in great circles of the sphere, and the fundamental

. . . . Tl :
region is a spherical triangle of angles —, %, %, where Ll—':" 1% + 1o 1
n

We thus obtain the extended polyhedral groups:

(1.33) @ o o o o—o *—o—o —o——o ® o
/32J3)

or, in the other notation,
(M x (=[], [Ix(Mx. (3,3, [3,4] [3,5].
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Of course [m, n] is the same as [n, m]. Since the fundamental region is 5

spherical triangle of area 1, +Z + Z _ a. the order is
- m n
4
1 1 1°
mtTw T2

The network of such triangles covering the sphere is known as the Dyck
group-picture 7) for [m, n].
We cannot use four or more concurrent mirrors, since the average angle

zt, whereas no angle of a funda-

of a spherical m-gon is greater than —

mental region can be greater than —-2'— But we may have four mirrors forming

a wedge-shaped region, corresponding to the graph e—e e—e. We
may also take one (horizontal) mirror with three or four (vertical) mirrors
all-perpendicular to it; the graphs are then given by adding an isolated dot
to each of (1.32). These groups are, of course, infinite; but the really inter-
esting infinite groups are those whose fundamental regions are finite polyhedra.
Clearly, each dihedral angle of such a polyhedron must be a submultiple
of 7 (namely 7—27- or % or —'}, etc.). The important thing to notice is that each
angle 1s < g

Any polyhedron whose dihedral angles are all < % 1s esther a tetrahedron

or a triangular prism or a rectangular parallelepiped. To prove this, draw a
sphere around any vertex of such a polyhedron, obtaining a spherical polygon

whose angles are all < % We have seen that such a polygon can only be a

triangle; hence the polyhedron has only trihedral vertices. Moreover, the
sides of this triangle (regarded as lying on a sphere of unit radius) are face-

angles of the polyhedron. But if the angles of a spherical triangle are < =,

then also the sides are = %, since they are given by such formulae as
cos A cos B 4 cos C
sin Asin B

Hence the face-angles are < 52'—, and the faces must be either triangles or

cos ¢ =

rectangles. Now, if a polyhedron has only trihedral vertices, and its faces

7) W. Threlfall, Gruppenbilder. Abh. sichs. Akad. 41 Nr. 6 (1932), pp. 16, 26. For
orthogonal projections of the actual cases, see Rouse Ball, Mathematical Recreations and
Essays (eleventh edition, London 1939), p. 157. For stereographic projections, see Burn-
side, Theory of Groups (second edition, Cambridge 1911), pp. 405—407; Coxeter, Amer.

Math. Monthly 45 (1938), pp.!522—525. When 7—:;- + % < %, a group [m, n] may be

defined as operating in the hyperbolic plane, instead of on the sphere. The above for-
mula for the order is no longer applicable; in fact it gives a negative value. The order i8
actually infinite, since the hyperbolic plane has an infinite area.

Mathematische Zeitschrift. 46. 05
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consist of Fy triangles and F, rectangles (F3 =0, F4 = 0), it must have
1 (83F3 ~4F,) edges and } (3F, + 4 F,) vertices, whence % Fs and }F,
are integers. By Euler’s Theorem,
F3 +F, —}(3F; +4F,) =2,
that 1s,
1Fy + }Fy = 2.

The solution F3 = 4, F, = 0 gives a tetrahedron; F3 = 2, F, = 3 gives a
triangular prism; and F3 = 0, F; = 6 gives a rectangular parallelepiped.

We obtain the groups with prismatic fundamental regions (including the
rectangular parallelepiped) by adding the symbol ®——=-® to each of (1. 32).
On the other hand, if the fundamental region is a tetrahedron, each corner
must form a trihedral angle of one of the types enumerated in (1.33). In
order to show that the only actual cases are

(1. 34) D >—a' — o —o o

or, in the other notation,

r~ [a)
o, [g] [4, 3, 4], L5 j

4 ' )/"]
we may use Schlafli’s formula E 4 ) 3
1 — €2 —Cg — Ci4
— 1 — C — G
(1. 35) o B TR,
— C31 — C32 1 — C34
—C41 — C2 — C43 1

which relates the cosines (c,, = ¢,,) of the six dihedral angles of any tetra-
hedron.
Thorold Gosset has sent me the following elegant proof of this relation.
Let 4;, 45, A3, 44 denote the areas of the four faces (so that ¢, is the
cosine of the angle between the faces A,, 4,). By projecting 4., A5, A,
onto A;, we obtain
Ay =c1ady + 1343 + ¢4 4,
Thus
Ay —e10ds — 1343 — 144, =0,
—¢c1 4y + Ay —ca3dz —cy4dy =0,
—c314; —c30do+ Az —c34 44 =0,
—cg1dy —cgpdy —cy3 43+ Ay =0.

The desired result follows by eliminating the 4.

257
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Precisely the same method of proof applies to the analogous formula
for a simplex in Euclidean space of any number of dimensions. In two dimen-
sions, as applied to a triangle ABC, it is equivalent to the formula

A+B+C=n=x

§ 1. 4.

Abstract definitions for these groups and certain subgroups.
By (1.21), the group [m,n] or ®——e——= has the abstract de-
finition
(1. 41) R} = R} = R2 = (R, R,)" = (R, R3)2 = (R, Ry)* = 1.
Since each of these relations involves an even number of the R,, there is a

subgroup of index two consisting of all products of even numbers of the R,
We denote this subgroup by [m, n]’; geometrically, it consists of all the rota-

tions in [m, n]. It is generated by the two elements The nofation [m n
S; = R,R,, 8S; =R,R;3, fhas been CJ\CMju(

which satisfy t -r\]

(1. 411) T =82 =(8;8;) = 1.

These relations constitute a complete definition for [, »]’, since (1. 41) can
be derived from them by adjoining an involutory element R, which transforms
S; and S, into their inverses, and then defining R, = S, R,, R; — R, S,.
Similarly, the infinite group 4 or
(1. 42) R} = R} = B = (R1R,)? = (R, R3)® = (R, R,)3 = 1
has the rotational subgroup A’, defined by
We observe that [2, n])' ~ [n]. This is the dikedral group; [3, 37, [3, 4],
[3,5)" are the tetrahedral, octahedral, and icosahedral groups, respectively 8).
When 7 is even, [m, n] has another subgroup of index two, say [m’, n]ur [m*', 71}.
generated by S; and Rj. This is defined by

(1. 43) 8P = RE = (ST R; 8, Ry)® =

for, [m,n] can be derived from it by adjoining an involutory element R,
(permutable with Rj3) which transforms S; into its inverse, and then defining
R, = R,S,. We recognize [3’, 4] as the pyritohedral group; [3’, 6] and [4, 4]
are analogous infinite groups ?).

8) W. Dyck, Math. Annalen 20 (1882), p. 34.
¥) G. A. Miller, Amer. Journal of Math. 33 (1911), p. 368; Coxeter, Duke Math,
Journal 2 (1936), pp. 66, 67.
25*
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When m =3, the two elements P = R; R, Ry, Q = Ry R, (= S;%)
generate [3, n] itself in the form 1)
(1. 44) Q" = (PQ) = (PrQ2p = (P2 = 1.
Since each of these relations involves P an even number of times, the implied
period of P must be even. Let us denote it by ». We shall see (in § 1. 7) that

Y k.
h =4,6,10, o accordingas n = 3, 4,5, 6. Since P2 = S;S;1S718S,, 318

the period of the commutator of the generators of [3, n]'11). Whenn =3, (1.44)
1s equivalent to
Pt =@ = (PQ) =1,
which shows that
[3, 3] ~ [3, 4]".

The fact that [3, 3] is a subgroup of index two in [3, 4] may also be seen
by adjoining to [3, 3] an involutory element R, (permutable with R,) which
transforms R, into R,. On substituting By R; R, for R,. we obtain the
augmented group in the form

R} — B} = R} = (R,Ry)® — (R, R, = (R,R,)* — 1.
It may be shown similarly that, in the infinite group [4, 3, 4], defined by

(L.45) R} = R} = R? = R? — (R,Ry)® = (R, R,)* — (R,R,)?
= (R, R,)t = (R2R3)3 = (RsR‘;)4 =1,
3
the reflections R; R, R,, R,, R,, R, generate a subgroup [3]; in this, again,
4
the reflections R, R, R, R,, R;, R, R, R, gene-

rate a subgroup 0. Thus the three groups (1. 34)
are closely related.

Geometrically, [4, 3, 4] 1s the complete

symmetry-group of the ordinary cubic lattice; in

SRS N fact. the fundamental region is a tetrahedron P,

P, Py P, where P, is a vertex of one of the cubes,

P, is the mid-point of an edge, P; is the centre of

a square face, and P, is the centre of the whole

cube. Let P| be another vertex of the cube, chosen

so that P, is the mid-point of P; P,; and let P, be the centre of another

cube, chosen so that Py is the midpoint of P, P, Then P, P, P, P, is the
3

fundamental region of the subgroup [3], and P, P, P, P, is that of the
. 4

R

subgroup (.

1%) Coxeter, Proc. Camb. Phil. Soc. 32 (1936), p. 195.
11) Coxeter, Trans. Amer. Math. Soc. 45 (1939), p- 88.

259
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Each of these groups has its rotational subgroup of index two. Thus

R, R,, R, R, R3 R, generatel1?) [4,3,4],

3 ’
(R: Rs)2, R, Rs, R; R, generate [3] ,
4
(R, R.)2, R, R;, (R;R,)? generate O
The pyritohedral group may be said to have three infinite analogues,
each a subgroup of index two in [4, 3, 4]:

R, R,, R, R, R, generate [(4,3), 4],
Ry, R, R, R, generate [4,3’,4], R
R, R,, R,, R; generate [4,3,4']. sl lafrt® 2

In the last of these, the rotary reflections R, R; Ry, R, Ry R; generate a
subgroup which is denoted by 13) (4, 4 | 3, 3) because of its remarkably concise
definition: [(27 (42 44/

(1. 46) Rt = S84 = (RS)3 = (R-18)3 = 1.

Further groups, in which [4, 3, 4], [4, 3, 4], [4,3,4], [¢,3,4], O, O’
occur as subgroups of index two, can be derived by adjoining an involutory
element 7' (geometrically, the rotation through 7 about the join of the mid-
points of the edges P; Py, P, P; of the tetrahedron P; P, P, P,), which
transforms R;, R,, R3, R, into R,, R;, R,, R,. Thus

R, T, R; generate [[4, 3, 4]],

R\R;, T, R,R; generate [[4, 3, 4]], ‘ aa
R, T, R, R, generate [[4, 3, 4], ™
R,R,, T, R, generate [[4',3, 4']]  orl4) G5
R, R, R,, T, R, generate [O],

(R, R5)?,, T, Ry, R; generate [{O].

In [[4, 3, 4]], the rotary reflections R, T, T R; generate a subgroup
(4,6 2, 4), with a definition analogous to (1. 46) 15). Similarly, the elements
R, Ry R, T, T R, of [O] generate (6,6 | 2, 3). Finally, there are two inter-
esting subgroups of index two in [[4/, 3, 4']]:

R, Ry, T R, generate (2, 6, 6; 2), which is defined by

E=Vs=UVPE=UV-10UV) =1;

and B) Ry T, T R, generate the analogous group (2, 6, 4; 3).

12) See J. A. Todd, Proc. Camb. Phil. Soc. 27 (1931), p. 217, where these gene-

rators are called 7, T',, T,.
13) Coxeter, Trans. Amer. Math. Soc. 45 (1939), p. 8l.
14) Ibid., pp. 119, 125.
15) Coxeter, Duke Math. Journal 2 (1936), p. 73.

e
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We have now found generators for 20 of the 230 space-groups of crystallo-
graphy. Continuing thus, we should be able to derive the rest of the 36 space-
groups in the cubic system; but we have already gone far enough for our
main purpose, which is to point the analogy to the finite groups in four dimen-
sions.

§1.5.
Wythoff’s construction for uniform polyhedra.

Mobius 18) drew several diagrams to show the set of all transformsof a
point under an extended polyhedral group [m,n]. The points so obtained
are the vertices of an edge-reflexible polyhedron, which is uniform- if the
initial point is suitably located. This construction was generalized in a very
fruitful manner by W. A. Wythoff 17); therefore I have named it after him.

|

I

| I

FE RS 7 A RS
// \\ // \\ // \\
7 ~N P i ~ 7 N
rd \\ // \\ // \\.
|
! v
[ | |
[\ l }
\ T 1
| | :
| | |
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\\ // \\ ,/ \\ //
~N ~ N 7 e
”
N P SNyl 7 \\ ¥

| | |

| | |

| | |

The unextended group [m,n]" leads similarly 18) to a polyhedron which,
though not in general edge-reflexible, 1s again uniform for a suitable position
of the initial point. The infinite groups (1. 32) lead analogously to polygonal
plane-fillings or tessellations, which may be regarded as infinite polyhedra 19).

16) Gesammelte Werke 2 (1886), pp. 661, 677, 691.
17) Proc. Royal Acad. of Sci., Amsterdam 20 (1918), pp. 966 —970.
18) Mobius, loc. cit., pp. 656, 669, 688.
1°) Kepler, Opera omnia, 5, pp. 117—119 (Figs. D, E, F, L, N. P, S, V, Mm, Ii);
Badoureau, Journal de I’Ecole Polytech. 49 (1881), p. 93 (Figs. 61 —66); Andreini,
Mem. della Soc. ital. delle Sci. (3) 14 (1903). pp. 3—8 (Figs. 1—8, 9’, 10). Badoureau
13

(through an error on p. 88) omitted Kepler's tessellation L or 3. 6 or s 16)° and was

copied by several later authors.
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The representation of the groups by graphs provides useful symbols for the
polyhedra. The position of the initial point is indicated by drawing a ring
around one or more of the dots in the graph. When the fundamental region
is a (plane or spherical) triangle, the three dots originally symbolize its sides,
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but can just as well be regarded as symbolizing the respectively opposite
vertices. h

In the following four illustrations. the fundamental region is a triangle
4
2
broken lines.

of angles ,%, -675 and the derived (infinite) polvhedra are drawn in
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The polyhedron whose vertices are the transforms of a vertex of the
triangle, is indicated by ringing the corresponding dot in the graph._

The polyhedron whose vertices are the transforms of a point lying on
a side of the triangle, is indicated by ringing two dots. In order that the

@ s @

@ —————G ')

6 @ 0 e @ e

—@®;®
N ] / {
- ° / | |
S
.< ' 0<
./ ('} °
N N

edges of the polyhedron may be all equal, the chosen point must be equidistant
from the two mirrors on which it does not lie; that is, its position, on the
indicated side of the triangle, is determined as lying on the bisector of the
opposite angle.

In both these cases, it is immaterial whether we use the group generated
by reflections, or its rotational subgroup of index two.
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The polyhedron whose vertices are the transforms. under the group
generated by reflections, of a point lying within the triangle, is indicated by
ringing all three dots. The chosen point now has to be equidistant from all
three mirrors, i. e. at the in-centre of the triangle.

Finally, the polyhedron whose vertices are the transforms, under the
rotational subgroup, of a point lying within the triangle, is indicated by
l‘.emOVing the dots 20) from this last symbol, leaving just the rings and the
links. In this case the chosen point, say Q, is generally not at the in-centre,
but is determined by the relations

AQsind =BQ sin B =CQsinC
if the fundamental region ABC is a plane triangle, or
sin AQ sin 4 = sin BQ sin B = sin CQ sin C
if it is a spherical triangle. We may recall, for the sake of comparison, that

the corresponding relations for the in-centre, P, are

APﬁn%==BP§n§==CPdng

or

\

. . A . 5 . .
sin AP sin o = sin BP sm—g— = sin CP sin %

Thus Q cannot coincide with P unless

A=B=c(=gorg)

It is sometimes convenient to denote each uniform polyhedron by a
symbol consisting of the numbers of sides of the various faces that surround
a vertex, 1n their proper cyclic order. In this notation, the tessellations drawn

above (in broken lines) are:

6.6.6, 3.6.3.6, 3.4.6.4, 4.6.12, 3.3.3.3.6.
The first two and the last of these are naturally abbreviated to
63, (3.6)2, 346.

Similarly, the tessellations

A AN A A

36, (3.6)2, 6% and again 36,

are

20) This process can be thought of as ‘“removing the reflections.” Tals (‘{eVd‘

L&LC"'\ 0{ us;”j e/"\’gf7 (—(‘7\?5 Was 'P“dl't’—‘t'( bj\A[l\C\ﬂq Boo(ﬁ S'fptr
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The analogous construction with only one or two mirrors (instead of
three) leads to the symbols

- ®© ® @ 9 050

for a line-segment, a square, an n-gon, a 2 n-gon, and again an n-gon (n = 3).

I\
|2

|
l

@

®@ @ @—o O—®

The special virtue of this symbolism is that the symbol for a polyhedron
contains the symbols for the various kinds of face.

The reader will have no difficulty in verifying that the groups [m, n]
and [m,n]’ lead to the following polyhedra:

®@ © @ 43 or {4, 3}, the cube;

OO0 O 3 ,» {3, 3}, the regular tetrahedron;

® @ %7 , {Ix{n) the n-gonal prism;

© oo £:2n . Ux{2nh

o0 00 33.n ,y 8 {i}, the m-gonal antiprism;
@7 ™ ,, |m, m}, the general regular polyhedron;
@7 (m - n)? 5 {1:} (described later);

L gt T 2m32-n , tim,n} the “truncated {m,n}”’;
@77 ® m-4-n-4 ,, 7 {:’:} the “rhombi-{:':}’;

™

D m ,’.
O 4.2m-2n , Ly, the “truncated {n} ;

O—=O07C 2.m-3-n ,, s{m

This list includes all the finite uniform polyhedra, with several repetitions,
and all the uniform tessellations except 3° - 42 (whose symmetry group is not
generated by reflections alone, nor by rotations alone 21),

The symbol {:’:} includes the cuboctahedron {2} and the icosidodecahedron
{3} The prism is denoted by {} x {n}, as being the “rectangular product”
0 .

of the line-segment {} and the n-gon {n}. In the same notation, the square

21) See Badoureau’s Fig. 67, or Andreini’s Fig.9. It is conceivable that fintle
polytopes of this exceptional kind may occur in higher space: but none has ever been

discovered.
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-)

. &
could be called {} X {}, and the cube {} X {} X {}. The symbol s { | for the
131 and the snub dode-

antiprism is based on analogy with the snub cube 22) s ]
cahedron 22) s { g}

The extended polyhedral group [3, n] (» = 4 or 5) is the whole symmetry-
group of each of the seven polyhedra

{3, n}, {:}, {n,8), ¢t{(3,n}, r{f}, t {n, 3}, t{:},

whose graphical symbols are derived from e—e—e by ringiflg one, two,
or all three dots. But the only uniform polyhedra of which [3. 3] is the whole
Symmetry-group are {3, 3} and ¢ {3, 3}. For, the three polyhedra

—@—eo  @—0—0® 40— —@

have an extra symmetry, which can be observed as P
a symmetry of the graphical symbols; in fact, the
fundamental region of [3, 3] is an isosceles triangle,
and the typical vertex (P; or P, or P3) lies on the
symmetrical median. By adding the reflection in this
median we enlarge the group [3, 3] to [3, 4]. These
three polyhedra are thus the same as

Q—i—q—oo——@—y—oO—OT

(the octahedron, the cuboctahedron, and the truncated octahedron).

Similarly [3,#]" (» = 4 or 5) is the whole symmetry-group of s {:}, but
s {g} is the icosahedron.

§ 1. 6.
The pyritohedral group.

Kepler 23) observed that the eight vertices of a cube can be selected from
the twenty vertices of the dodecahedron, one edge of the cube lying in each
of the twelve faces of the dodecahedron. It follows by reciprocation that eight
of the twenty faces of the icosahedron lie in the planes of the faces of an

33) These, as the symbols indicate, would have been more happily termed “snub
cuboctahedron” and ‘‘snub icosidodecahedron”.
23) Kepler, Opera omnia 5, p. 271.
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octahedron 24) whose twelve edges pass respectively through the twelve ver-

tices of the icosahedron.

Cube and dodecahedron. Icosahedron and octahedron.

The vertices of the octahedron may be supposed to have Cartesian coor-
dinates
(£1,0,0), (0, %10, (0,0 1)

Its edges are divided in the ratio a:b by the points
(i a? i b’ 0)’ (O’ .-4'_0’7 :t b), (i b, 07 i a)'
These are the vertices of a regular icosahedron 25) provided the point (a, b, 0)
is equidistant from (a, —b, 0) and (0, a, ), that is, provided —:- is the positive
root of the equation
, 22 —1—1=0,
namely —:— = ——E,—g_—l (The negative root gives analogously the great
tcosahedron {3, —g—}, which has the same vertices as a larger {3, 5}.)
T Mrs. A. Boole Stott has pointed out that, if we divide
the edges of the octahedron in any ratio (the same for
all, so that each face has an inscribed equilateral triangle),
we obtain in general an irregular icosahedron with edges
\ A of two different lengths. Of the twenty triangular faces,
eight are equilateral and twelve isosceles. From this
point of view, the cuboctahedron which results from taking the ratio 1:1
is to be regarded as a partially degenerate icosahedron, one diagonal of each

square being the common base of two isosceles triangles which have come
to lie in one plane.

24) Poinsot, Cauchy, Bertrand, Cayley, Abhandlungen iiber die regelmiBigen
Sternkorper (Leipzig 1906), p. 61.
20) P. H. Schoute, Mehrdimensionale Geometrie 2 (Leipzig 1905), p. 158.
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. The symmetry-group of the figure composed of the octahedron with jts
mnscribed icosahedron, is not [3, 4], since it lacks the reflection which reverses
an edge of the octahedron. But it contains the trigonal rotations of the octa-
¥1edral group (which generate the tetrahedral group) and the reflections that
1nte:rchange pairs of opposite vertices of the octahedron. It is therefore the
pyritohedral group [3, 4], generated by the operations B; R, and Rj of [3, 4].
(See (1.43). Of course this is also svmmetry-group of the reciprocal figure
composed of the cube with its circumscribed dodecahedron.)

The cube inscribed in the dodecahedron is one of five such cubes (in
the same dodecahedron); reciprocally, five octahedra can be circumscribed
to a given icosahedron. The permutations of the five cubes (or of the five
octahedra) provide a very clear demonstration of the simple isomorphism
between the icosahedral group [3.5] and the alternating group of degree five 26).

§1.7.
The period of R, R; Ry in [m, n].

The above diagram shows five vertices of the polyhedron { m} as derived
n
by Wythoff’s construction from a network of spherical triangles of angles

—725, :—;, %:— The triangles are named after the corresponding operations of the
group [m,n], the first triangle (fundamental region) being named 1. To

construct [7: Jl we take the vertex A at the right angle of triangle 1, and derive

the adjacent vertices B, C, D, E by reflecting in the hypotenuses of the four
triangles (1, B3, R3 Ry, R,;) which surround A. Since the whole figure is
symmetrical under the rotation through 7z about A (namely the operation
Rs R,), the points E, A, C lie on a great circle. The operation R, R, R,
which carries E to A, and A to C, is a rotary reflection, consisting of the
rotation from EA to AC combined with the reflection in this great circle.

26) F, Klein, Vorlesungen iiber das Ikosaeder (Leipzig 1884), p. 19.
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Suppose that % arcs such as EA or A C make up the whole great circle. Then
the period of R; R, Ry is b or 2 according as A is even or odd. (The latter
possibility occurs only in the trivial case when m = 2 and » is odd.)

Let us now join the five points A,.B. C, D, E by straight lines, so that
EAB ...isan m-gon, BAC .. .isann-gon.and EAC ...isan h-gon. Then

3 T ‘ b 3 P T
EB = Zacos;, BC = 2acos—, EC=2acos,

where @ = AB (= AC = AD = AE). But, since BCDE is a rectangle,

ECz = EB2 4+ BC(Cz2.
Hence
o T

.71 cos2 > = cos? = 4- cos? .
( ) 3 8w T n

By considering the analogous tessellations, we see that this formula

continues to hold when mi + % = % The results are tabulated below.

. ” 2 ’ 3 3 3 3 4
O L T A T BT
A n | 4 6 | 10 ‘ O

The equation (1.71) has an application in the theory of regular star-
polyhedra %7). Moreover, if m > 2 and n > 2 (so that the graph is connected),

the total number of reflections is %’,‘. Comparison with the analogous results

in higher space 28) shows that this expression is not purely fortuitous, although

no explanation for it has yet been found.

But the most important application of (1. 71) is in connection with the
h

central inversion. The operation (R; R, R3)E, which carries the arc AC to
its antipodal position, is either the central inversion or a rotation through =,
according as it involves an odd or even number of reflections, that is, according
as -’i is odd or even. If m > 2 and n > 2, the reflection in the great circle

2
E AC does not belong to the group; therefore the central inversion belongs

only when 4 1s odd, and is then given by the formula

-

h
T

Z = (B, Ry Ry)*.

27) Coxeter, Proc. Camb. Phil. Soc. 27 (1931), p. 203.
28) Coxeter, Annals of Math. 35 (1934), p. 610.
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Since the central inversion belongs to [3, #] (n = 4 or 5) but not to the
rotation group [3,n]’, the former group is the direct product of the latter
with the group of order two generated by Z; thus we may write

(1.72) [38,n] ~ [1] X [3,n] (n =4 or b).
Moreover, Z occurs in the pyritohedral group (see §1.4) as (S; R3)3; hence
(1. 73) (3", 4] ~ [1] x [3, 3]’

Since [3, 3] and [3, 4]’ are the alternating and symmetric groups of degree
four, while [3, 5]’ is the alternating group of degree five, it follows that [3’, 4]
1s a subgroup in both [3, 4] and [3.5]. (See § 1. 6).

§1.8.
An explanation for Pappus’ observation on reciprocal regular polyhedra.

Pappus noticed that, when two reciprocal regular solids of the same
in-radius (and therefore the same circum-radius) stand side by side on a
horizontal plane, the manner in which the vertices are distributed in hori-
zontal planes is the same for both: the planes are the same, and the numbers
of vertices in each plane are proportional 29). The situation is similar when
m
ls
opposite edges of the former lie in the same planes as two opposite n-gons of
the latter. (Thus the vertices of the dodecahedron, distributed as 2 4 4 + 2
L 4 L+ 2+ 4+ 2, lie in the same planes as the vertices of the icosidodeca-
hedron, distributed as 3 +6 +3 + 6 + 3 + 6 4+ 3.) Wythoff’s construc-
tion provides a general explanation for these apparently fortuitous results.

Let P, Q be any two points of the sphere on which the group [m,n)
operates. Then the distances from P to all the transforms of Q are equal (in some
order) to the distances from Q to all the transforms of P. For, any operation S
of the group transforms the points P, QS—1 into the points PS, Q.

Consider two reciprocal solids, {m, n} and {n, m}, derived by Wythoff’s
construction from the same network of spherical triangles. Let P be any
vertex of the former, Q of the latter, so that the transforms of P coincide in

we compare the “‘semi-reciprocal’ solids {m, n} and }, so placed that two

“sets.2 n at all the vertices of {m, n} while those of Q coincide in sets of 2 m

at the vertices of {n, m}. When we regard P as lying vertically below the
centre, the vertices of {n, m} are distributed in horizontal planes according to
their distances from P; and when instead we regard Q as lying vertically below
the centre, we get the analogous distribution of the vertices of {m, n}. A similar

argument applies to the comparison of {m, n} and {7:}, the transforms of any

one vertex of the latter coinciding in sets of four at all the vertices.

29) Pappus of Alexandria, Book III, Props. 54—58.
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The nature of the above proof makes it clear that analogous results will
hold in any number of dimensions.

§1.9.
Uniform space-fillings.

The best way to acquire a clear idea of the appearance of polytopes in
four dimensions is to examine first the analogous infinite figures (“‘solid
tessellations™”) which consist of polyhedral solids fitting together to fill the
whole three-dimensional space. Such a space-filling is said to be uniform
if it has the following two properties:

(1) the solids are uniform polvhedra,

IS ame('r,'esl/(ii) there is a group of M}s (with or without reflections) which is
transitive on the vertices.

These figures have been almost exhaustively enumerated by Andreini %),
who gives excellent stereoscopic photographs of portions of them. Although
there are a few anomalous space-fillings 3!) analogous to the plane-filling
33 - 42, we shall restrict consideration to those uniform space-fillings which
are derivable (from infinite groups generated by reflections) by Wythoff’s
construction. We also exclude, as trivial, those cases in which the fundamental
region is infinite (namely a wedge, or an infinitely tall prism), that is, we
exclude those cases in which the graphical symbol falls into two disconnected
pieces, of which one represents a finite group and the other an infinite group.

If the graphical symbol is disconnected at all, the fundamental region is a
finite prism; and the initial point, which is to be a typical vertex of the space-
filling, may be taken either in one of the two basal planes or half-way between
them. In the former case we put a ring around one dot in the symbol e—-e ,
and in the latter case around both dots. The position of the point in its plane
is determined by the arrangement of rings in the remaining piece of the dis-

connected graph. For instance, the symbol

e A

represents the obvious space-filling of hexagonal prisms, the fundamental
region being an equilateral triangular prism with the initial point at its centre.
(In order that the vertical and horizontal edges of the space-filling may be
equal, the vertical and horizontal edges of this triangular prism must be in

39) Mem. della Soc. ital. delle Sci. (3) 14 (1905), pp. 75—129.
81) Coxeter, Proc. London Math. Soc. (2) 34 (1931), pp. 183 —184.
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the ratio 1: VI_’;) Clearly, the same space-filling is represented if we replace
the first piece of the symbol by @—=e (and halve height of the tri-
angular prism), or again if we replace the other piece by @—®——o or
by e—e—@. Asa “rectangular product’ this space-filling is{ o0} X {6, 3}.
Wythoff’s construction gives all such products except

{oo] X s{z}, {0} X s{:}, {00} X (33.42).

If we “remove the reflections”” and consider only the rotational subgroup
of index two, the initial point is determined in the fundamental region by
the fact that its distances from the edges are inversely proportional to the
sines of the corresponding dihedral angles. Consequently, if the fundamental
region is a prism, it must be either an equilateral triangular prism (with ver-

tical and horizontal edges in the ratio y 2. 4 5) or a cube; for, the points P
and Q of page 393 must coincide. Thus the symbols

(1. 91) O _/_“} and OO0 O=0 0OzO

represent uniform space-fillings (of tetrahedra and octahedra in both cases,
but differently arranged 32), although

s O50530 and OO0 O—05;0O

do not.

If the graphical symbol is connected, the fundamental region is tetrahedral,
and we have one of the three groups (1. 34). The four dots symbolize the
faces of the tetrahedron, or equally well the respectively opposite vertices.
Analogy with the two-dimensional case makes it unnecessary to explain in
detail what space-fillings are symbolized when we put rings around one, two,
three, or all four dots. In order that the edges may be all equal, the initial
point has to be equidistant from any two faces whose corresponding dots are
ringed; in particular, it has to be at the in-centre of the tetrahedron when all
four dots are ringed. Clearly, the symbol for each space-filling contains the
symbols for the various solids that occur.

It seems best to postpone till §2.7 the proof that no uniform space-
fillings, apart from those already mentioned, arise by considering rotational
subgroups.

We are now ready to symbolize (sometimes in several different ways)
all Andreini’s uniform space-fillings.

52) The vertices are the centres of the spheres in “hexagonal” and “spherical”
close-packing, respectively.
Mathematische Zeitschrift. 46. 26
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i's fi hical Symbol Abbreviated
RIS g i Holids it ach vertox Glapltematiges) symbol 33)

? =20 0 0

i
(The ordinary | i ;
cubic lattice) ‘ 8 cubes ' g

12 6 octahedra

8 tetrahedra | EI h
¥

13 S tetrahedra}
6 octahedra | o—=0

14 4 truncated octahedra

|
|

| 7 7

- - 2 tetrahedra \ :
15 6 truncated tetrahedra| . q0
) 1 octahedron 7 !
e 4 truncated cubes} : b 0y

@@ —o——° 4—-.]

33) Coxeter, Phil. Trans. Royal Soc. London (A) 229 (1930), pp. 344, 365, 360.
The symbol §, means the solid tessellation of cubes, regarded as a degenerate four-
dimensional polytope; kJ, and ¢o, stand for “half 4, and *‘quarter ,”, since ¢d, has
half the vertices of 2d,, which in turn has half the vertices of §,; to,1, d,, ¢, o,, .9 0,
are ‘‘truncations”, finite analogues of which will be described in § 2. 4. The remai;ling
symbols are natural generalizations of these.

34) Fig. 16 is not uniform.
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Andreini’s figure

19

?4l)i5

Abbreviated
symbol

Graphical Symbol
(Alternatives)

Solids at each vertex

2 octahedra |
4 cuboctahedra |

1 tetrahedron |
1 cube L
3 rhombicuboctahedral

2 cubes [
1 cuboctahedron
2 rhombicuboct,a.hedra.l

1 cube l
1 truncated octahedron
2 truncated cuboctahedra[

® 7 @©—@— o
1 cube o - - o o
2 octagonal prisms [ ¢ 5
1 truncated cube ’ &—@ — @ 0,1.3 "4
1 rhom_bicuboctahedron
1 truncated tetrahedron
1 truncated cube } h, .o
2 truncated cuboctahedra ¥ =374

1 cuboctahedron l
2 truncated tetrahedra
2 truncated octahedra

e — —_—

2 octagonal prisms | *—ae O a
2 truncated cuboctahedra | | ¥ % t.1 2,3 04
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Whenever a space-filling is derived from the whole group generated by
reflections (and not merely from the rotational subgroup), the number of
each type of solid at a vertex is easily deduced from the graphical symbol.
By removing all the ringed dots, and any links which emanate from them, we
derive the symbol for the group which leaves one vertex invariant. (If all
the dots are ringed, we are left with the null graph, which represents the group
of order one.) By removing all the ringed dots from the symbol for one of
the solids, we derive the symbol for the group which leaves invariant both
this solid and one of its vertices. The number of such solids at a vertex is
clearly equal to the index of the latter subgroup in the former.

Consider, for example, the symbol

— & —@
Here the group which keeps one vertex fixed is of order four, being repre-
sented by two isolated dots. The solids are truncated octahedra of the two

“types” .

&—@——o
._T©—©

The group which keeps fixed both a solid and one of its vertices, is of
order two, being represented by a single dot. The index of the latter group
in the former is two, showing that the vertex is surrounded by two truncated
octahedra of either type, that is, by four altogether.

Clearly, [4, 3, 4] is the whole symmetry-group of Oy, #y,1 Oy, t; 4, o 5 0y,
3

ty,1,205a0d & ; 59,; [[4,3,4]], of¢, , 6, and to,1,2,3 045 [3], of ho,, hyd,, h, ,4,,
4 1

hy 04; and [O], of ¢ dy.

Appendix:
On Cayley group-pictures.

The idea of representing the operations of any group by the points of
a graph has been proposed by both Cayley and Dehn %). Every line of the
graph is directed and is made to correspond to a definjte generator of the
group. (Cayley does this by colouring the lines, with different colours for the
different generators.) At each point there are two lines for each generator,
one directed towards the point and one directed away. Given any operation
of the group, expressed in ternis of the generators, we may start out from any

%) See W. Burnside, Theory of Groups (Cambridge 1911), pp. 423 —427; W. Threl-
fall, Gruppenbilder (Leipzig 1932), pp. 22—27; W. Gruner, Comm. Math. Helv. 10
(1938), p. 53.



276 Kaleidoscopes: Selected Writings of H. S. M. Coxeter

one point of the graph and proceed along a representative path to some other
(definite) point. Any different path between the same two points will represent
some other expression for the same operation. Hence each relation in the
abstract definition for the group will be represented by a closed path.

Whenever we have an involutory generator, the corresponding pairs of
lines may be replaced by single lines along which both directions are allowed.
For instance, a hexagon of such undirected lines represents the dihedral
group [3], defined by

R} = R? = (R,R,)° = 1.

On the other hand, a hexagon of cyclically directed lines represents the cyclic
group [6]’, defined by
Sé = 1.

In many cases the graph may be taken to consist of the vertices and

(3

edges of a polyhedron. Burnside’s frontispiece shows the snub cube, s l 4},

as a group-picture for the octahedral group [3,4]’. The polyhedron being
simply-connected, its different faces (together with any edge along which
both directions are allowed) provide the generating relations for an ab-
stract definition. For instance, the anomalous tessellation 33 - 42 represents
the infinite group

P2=Q, R:=1, QR =RQ.

The following table shows that every uniform polyhedron and tessellation,
except the dodecahedron {5,3} and the icosidodecahedron {2], can be regarded

as a Cayley group-picture (sometimes of two distinct groups, by directing the
edges differently)36).

36) This fact was partially recognized by Maschke, Amer. Journ. of Math. 18
(1896), pp.166—194. His Figs. 2—10, 16—18 are respectively { } X {n}, ¢ (3,3},

3 : 3%
,{g} £(3,4), t14,3), r{4}. £13,51, 15,3}, r{cd, {)x (2n), t!g} t{i}
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| -picture
Group Abstract definition ‘ Ca}'(lggeggggé) :fgf,
N - | m)
[m, n] (1. 41) ;  {m]
[1] % [n] (The same with m = 2) oy x 2a)
m
[m, n)' Sm =8P =(8,8) =1 2w
[»] (The same with m = 2) () x {n)
[m’ n], S; = SO2 = (82 So)m — 1 t {m. 71}
[m, n]’ S2=8m=8) = 8,88 =1 s{’:}
[n] (The same with m = 2) i}
[(m', 2 p] S" = R'=(S"'RSR?Y =1 t{2p,m)
4 (1.42) {6,3)
3 — 8% = L — [3)
§3=83=(8,8) =1 2
S‘:-: = s;f — S; — 8,8,8 =1 (3,6

The cube is included as {} X {4}, the tetrahedron as s zl the octahedron
\

l bl
as s g K the icosahedron as s {g}, the cuboctahedron as r {g} , and the square

tessellation as r {i}

The first two lines of the above table illustrate the following general
principle. The Cayley group-picture for any group generated by reflections
naturally has one vertex in each region (§ 1. 2), so we can think of it as con-
sisting of the vertices and edges of the polytope symbolized by ringing all
the dots of the graph (§1.5). In other words, the network of regions and
the Cayley group-picture are dual complexes. The generators being involu-
tory, there is no question of directing the edges of the polytope: both direc-
tions are allowed along every edge. Thus. in the notation of § 1. 9, the space-
fillings 5. t1.2 04, to10904, fo1,230, provide Cayley group-pictures for

3
[0] X[o0] X[ee], O, [i] [4, 3. 4], respectively.

The next three lines of the table illustrate the following less obvious
principle. The rotational subgroup of the group respresented by any connected
graph has a Cayley group-picture consisting of the vertices and edges of the
polytope symbolized by ringing all but one of the dots of the graph. (We obtain
various group-pictures for the same group by varying the unringed dot.)
Let us prove this for the case when the graph has four dots, so that the funda-
mental region is a tetrahedron bounded by planes p,. ps. p3. ps. If the first
three dots are ringed. the typical vertex of the polytope lies in the face p,
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[4,3,4]*

[4,3"']*

[3[4]]+
[(4,3)%,4]
[(4,3,4,2%)]

[[3*]*]
[[4,3,4]%]

of the tetrahedron, and the neighbouring vertices are derived by rotating
about the sides of this face, i.e. by applying the operations R, Ry. R, R;;
R, Ry, Ry Ry; Ry Ry, R, R,. Of the edges leading to these neighbouring
vertices, let the first of each pair be directed away from the original vertex,
and the second towards it. A consistent direction for all the edges of the poly-
tope 1s then given by applying the rotation-group; and the vertices and edges
of the polytope form a Cayley group-picture for this group, as generated
by R, R,. R, Ry, Ry R,%). Whenever one of the dihedral angles of the
tetrahedron is a right angle, the corresponding pair of edges of the polytope
will coincide, in the manner appropriate for an involutory generator.

The examples in ordinary space are given in the first six lines of the
following table. The plane interfaces of each space-filling provide the relations
for the abstract definition of the group. This last remark enables us to insert
the remaining lines of the table. The abstract definitions can be verified by
writing 4 = Ry R,, B=R,R,, C = R;R,, D = R, Ry, E = R, R,
F=R R, G=R,, H=FA,J=FD, K = F2 I, = (2, in the notation
of (1.45).

: Cayley
Group Abstract definition group-
picture
e
; A2:Bzzo4:(AB)‘:(AC)'3:(BC)3:I Ly, 1,2 04
(4,341 ,
!' 8 = IR — E)/: (CD)P = (CE) = (DE:= 1 lo,1,3 4
gy [ H?= B'= C'= (HB)? = (HC) = (BCP =1 ty,2 04
’3] { Ct = ¥ = BV = (OJP = (CE)? = (JE-1)? = 1%) lo,2 04
4 K?= B>= E’= (KB)!= (KE)? = (BE)* = 1 he,3 64
0’ I L? = J3=E3= (LJ)® — (LE)® = (JE-'): = 139%) hs d4
((4.3),4] | B*=F'=' = (EF)* = (E-1GEG)? = F1GFG =1 1y 136,
(4,4]3,3) | Rt = S = (RS)} = (R-1Sps = 1 1,3 04
(6,6]2,8) Ut =V = (UVPE=(C-1V)8=1 ty o dy
(4,6[2,4);' X‘_—YG:(XY)’?(X“Y)‘:I £o,1.2,5 04

37) The abstract definition is
Sin{ — S;“ — Sgu o (82—1S3)"” — (S;;—ISI)"‘“ = (81—182)1112 oz L.
%8) The same relations, with JE instead of JE~1 would define a group of

order 192.

*) Here JE could be written for JE~, by defining E as R, R, instead of R, R,

(Eingegangen am 8. Mai 1939.)



