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The five regular (““ Platonic ') polyhedra,

3,3, 34 {43 85 &3IJ%

have been known and admired for thousands of years. As analogues f
these, Kepler drew attention to the three regular plane-fillings,

4,4, 3,6}, {6 3},

which may be regarded as regular polyhedra with infinitely many faces.
He also introduced two of the four star polyhedra,

G5 55 33 &3

the remaining two were added by Poinsot, but it was Cauchy] who first
proved that there are only four. These have the disadvantage of possessing
“false vertices ”, i.e. points other than vertices, where three or more faces
meet.

One day in 1926, J. F. Petrie told me with much excitement that he
had discovered two new regular polyhedra; infinite, but free from false
vertices. When my incredulity had begun to subside, he described them
to me: one consisting of squares, six at each vertex (Fig. i), and one

* The meaning of these symbols, introduced by Schlifli, is clear from the following
example : the cube is {4, 3}, because it is bounded by squares, three at each vertex.

t This extension of the above notation is also due to Schlifli. The four polyhedra are,
respectively, the great dodecahedron, the small stellated dodecahedron, the great icosahedron.
the great stellated dodecahedron. '

¢ Cauchy, 1. Cf. Coxeter, 1, 203. (For references, see page 105.)
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Regular Skew Polyhedra 77

nsisting of hexagons, four at each vertex (Fig. ii). It was useless to
© test that there is no room for more than four squares round a verfbx.
g trick is, to let the faces go up and down in a kind of zig-zag formation,
Thihat the faces that adjoin a given “horizontal” face lie. alternately
‘s‘o bove” and “below” it. When I understood this, T pointed out a
th&.’i'l‘d possibility : hexagons, six at cach vertey (Fig. iii)

Fig. iii: {6, 6(3}.
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us that, although these new P°1yhedm ‘
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: 4,3
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p

principleS-

8¢ Ney,

b firy

1. Defimtions.

We define a polyhedron as a connected set of ordifmry plane P°IYg0ns|
such that every side of every polygon belongs also to just one other P°1yg011;
of the set. We stipulate that any two of tlfe polygons sha]] have §,
common either a side (and two vertices), or a single vertex, or Nothing
all (thus ruling out the Kepler-Poinsot polyhedra). We define g 8ymmely,
(or “ symmetry operation ”’) of any figure as a congruent transformatjoy of
the figure into itself (i.e., & combination of translations, rotations, apq
reflections). A completely irregular figure has no symmetry save identity,

A polyhedron is said to be regular if it possesses two particular Symme.
tries: one which cyclically permutes the vertices of any face ¢, and one
which cyclically permutes the faces that meet at a vertex C, ¢ being &
vertex of ¢. It follows that these two symmetries, say R and S, generate
a group which is transitive on the vertices, on the edges, and on the faces,
Moreover, the faces are regular polygons (in the most elementary sense).
This clearly agrees with our preconceived notion of regularity.

Perhaps this will seem clearer if we give the analogous definition for
a regular polygon. A polygon (which may be skew) is said to be regularifit
possesses a symmetry which cyclically permutes the vertices (and there-
fore also the sides) of the polygon. Regular polygons can be classified

* Coxeter, 4.

t For this picture some apology is required. The lines which divide each hexago!

Into six triangles are to be ignored, since they arise merely from the manner in which "
particular model was built up.

+ Andreini, 1, 106 (Fig. 14), 107 (Fig. 15). .
I In §5, we relax this definition, and consider a connected set of topological polygor™
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Regular Skew Polyhedra 79

space are as follows:

Symmelry. Pislaon,

Reflection Digon, {2}, with two vertices and two coin-
cident sides.
Rotation (through 27/n) Ordinary n-gon, which we denote by {n}.
Rotary reflection Finite skew 2n-gon.
(involving rotation
through =/n)

Translation Apeirogon, {co} (i.e., an‘infinite straight line
broken into equal segments).
Glide Plane zig-zag (dividing the plane into two
equal parts).
Screw Helical polygon.

Since the ““square " of a rotary reflection is a pure rotation, the vertices
of a regular finite skew polygon lie alternately on two circles which reflect
into one another in a plane parallel to the planes of the circles (and therefore
half-way between them). Infact, the sides of such a polygon are the lateral
edges of an antiprism (eg., Fig. iv). Hence the number of sides must .be
even. (Ifthere are only foursides, these are edges of a tetragonal bisphenoid,
which can be regarded as a digonal antiprism.)

Fig. iv: The skew decagon in a pentagonal antiprism.

The line joining two alternate vertices of an ordinary regular n-gon (of
unit side) is of length 2 cos(m/n), and is called the vertex figure of the {n}.
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TWELVE GEOMETRIC ESSAYS
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Fig. v.

Let us first suppose the polyhedron to lie in ordinary space. It divides
space into two parts, one “inside” and one ‘““outside’ the polyhedron.
When the vertex figure is a skew polygon, the inside and outside are alike
(i.e. congruent) in the neighbourhood of one vertex, and are therefore alike
altogether. (In fact, R and S each interchange the inside and outside.)
Hence the polyhedron must be infinite. On account of the zig-zag nature
of the skew polygon, the faces that surround a given * horizontal ”’ face are
alternately “above” and ‘“below” it. Hence R, like 8, is a rotary
reflection.

The situation when the polyhedron is finite in four dimensions is very
similar. For, after projecting the polyhedron on to its circumscribed
hyper-sphere, we have again a surface lying in a manifold of three dimen-
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Regular Skew Polyhedra 81

gions, and di\.riding that manifold into two equal parts. R and S are still
rotary reflections, when regarded ag operat,

; p : : ing in the spherical three-space.
Let A ABB ceny B BCC “eey C CDD’.-. (Fig, V) be three faces of any

regular ’POI.V hedron’. We may suppose that R cyclically permutes the
edges B B, BC, CC, ... which belong to the second of these faces, while S
cyclically permutes the edges CD, C(, CB, ... which meet at C. Then the
product B reverses the edge BC, while the “quotient” RS-1 cyclically
permutes the edges AB, BC, CD,.... Hence ABCD... is a regular polygon
(but may be skew). The lines AA’, BB, CC’, DD/, ... are clearly con-
current, say at O. (When the faces are Squares, so that these edges are
parallel, we say that O is at infinity.) If the polyhedron is in three dimen-
sions, the planes ABB’, DCC’ are equally inclined to the plane B’ BCC’, on
the same side of it; therefore ABCD ... is a plane polygon. If the poly-
hedron is finite in four dimensions, the symmetry RS-1, being the product
of two rotary reflections, is a positive transformation. Since it leaves the
centre invariant, this must be either a simple rotation or a double rotation.
Since it also leaves the point O invariant, it can only be a simple rotation.
Hence ABCD ... is again a plane polygon.

In Figs. i, 1i, iii, this polygon appears as a hole (triangular in Fig. iii,
square in Figs. i and ii), and it is convenient to adopt the term hole in other
cases, t0o. The hole may be described as a path along edges, such that at
the end of each edge we leave two faces on (say) the left. In other words,
at any vertex of the path, the edges to be selected are not adjacent but
alternate. When (as above) the hole is a plane polygon, we may determine
it from its vertex figure, which is the join of two alternate vertices of the
vertex figure of the polyhedron. In the case of the ordinary polyhedron

{l, m}, whose vertex figure is an {m} of side 2 cos (n/l), it follows that the
“hole”* is an {n}, where

2 cos (m/n) = 2 cos (n/[l) . 2 cos(n/m),
1.e.
(1.1) cos (m/n) = 2 cos (m/l) cos (m/m).

We shall use the symbol {I, m|n} to denote any regular polyhedron
which is uniquely determined by

I, the number of vertices or sides of a face,
m, the number of edges or faces at a vertex,

n, the number of vertices or sides of a hole.

* Here the term ‘ hole” is not entirely appropriate. But triangular
clearly visible in the star polyhedron {5, 3} (Fig. xiii).

‘pits " are
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82 TWELVE GEOMETRIC ESSAYS
We shall see that every regular polyhedron in three qj
finite in four, is so determined. From this point of view,

{n, 8} is {n, 3|n},

{3, n} is {3, n|n},

{4, 4} is {4, 4|co}.

menai()m' o

2. The trigonometrical criterion for {I, m|n).

Consider first the geneml infinite regular polyhedron in three dimensiq,.
Let A, A’ denote the planes that perpendicularly bisect two adjacent edg&'
BC, CC, belonging to the face B’ BCC'... (Fig. v), and let y, u’ denote tp,
planes that bisect the dihedral angles at those same edges. These foy,
planes bound a tetrahedron, whose angles we proceed to calculate,

The planes A, g, and likewise X', p', are obviously perpendicular, The
planes A, A’ are both perpendicular to the plane BCC’, and meet it in the
perpendicular bisectors of two adjacent sides of the {} B'BCC’...; so the
angle between them is 27/l. The bisecting planes of the dihedral angles at
the edges through C all pass through the axis of the rotary reflection §;
since there are m such edges, the angle between two consecutive bisecting
planes, such as g, ', is 2/m. The planes A, p’ are both perpendicular to
the plane BCD, and meet it in the bisectors of the side BC and angle BCD of
the {n} ABCD...; so the angle between them is m/n. Collecting results,
we see that the six dihedral angles of the tetrahedron A\’ uu’ are

[ (Ap)= \"p)=1tm
AX) = 2x/l,
(np') = 2m/m,
L Ap)= X" p) ==/n.

We have now reduced the problem of enumerating the possible regl .
polyhedra to that of enumerating the possible tetrahedra of a special t¥F*
For each tetrahedron, we have two polyhedra,

{I, m|n} and {m,l|n},

(2.1) ]

of

which may be called reciprocal, since the vertices of each are t.he °.§n:;s,,¢
the faces of the other. Thus {4, 6|4} and {6, 4|4} (Figs. 1 an

reciprocal, while {6, 6|3} (Fig. iii) is self-reciprocal. ) dent:

Now, just as the three angles of a plane triangle are not indepe” nov
trahedro®

but add up to =, so also the six dihedral angles of a te .
3



Regular Skew Polyhedra 83

independent, but satisfy the relation

1 —cos (@b) —cos(ac) —cos (ad)
ey a=| 70D 1 ey —cosba) —o0
—cos(ca) —cos (ch) 1 —cos (cd) ’
—cos (da) —cos(db) —cos (dc) 1

where a, b, ¢, d are the four bounding planes.

In the case under considera-
tion,

A=(4 2T oost T _ al)( T g W - ti).
cos tcosm cosn 4 sin lamm cosn

After discarding two definitely positive factors, we are left with the
condition

b c ” ™ ks TR R Ty
(2.3) (2 €os - cos o cos —;) (2 sin —- mn;—cos7)—0.
By (1.1), the vanishing of the first factor gives the ordinary polyhedron

{l, m}.  Hence, to find all the possible skew polyhedra (in three dimensions),
we merely have to solve in integers the equation

(2.4) 2 sin(w/l) sin (7/m) = cos(=/n).
Apart from the plane-fillings
(3,6(6), (6,3]6), {4 4|co),
Wwhich are already covered by (1.1)*, the only solutions are :
{4, 6|4}, {6, 4|4}, {6, 6|3}

These infinite polyhedra may be called “complements” of the cube,
octahedron, and tetrahedron, respectively, since each solution {I, m|n} of
(2.4) corresponds to a solution {', m'|n} of (1.1), where

1l14+1/l' = 1/m+1jm' = .
We shall gee later that ‘‘complementary’ polyhedra have the same
dihedral angles.

For each value of n, the relation between ! and m may be presented
Eraphically by taking I and m as Cartesian coordinates in a plape. (2.3)
8 then the equation for a couple of curves, which are shown in Fig. vi when

"=3, Fig. vii when n—4. The finite polyhedra {/, m} appear as O’s on
the cunve

cos (/) cos (w/m) = % cos (=/n),

= * For the plane-fillings we have 1/{+1/m = }, so they can be rogarded indifforently as
l"‘Jl"lll‘y or gkew p(ll)'h(.‘dfﬂ.

%0
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Regular Skew Polyhedra 85

In the case of the general finite regular polyhedron in four dimensions,
the planes A, A', i1, u” have to be replaced by three-spaces through the centre,
put the angles between them are still given by (2. 1). They can be regarded
as bounding a spherical tetrahedron on the circumscribed hyper-sphere of
the polyhedron. As before, the two polyhedra {l, m|n} and {m, I|n} are
derivable from the same tetrahedron, and are reciprocal in the sense that
the vertices, edges, and faces of one correspond to the faces, edges, and
vertices of the other. The equation (2.2) has to be replaced by the
inequality™

A>0,
which reduces to

(2 cos LZT_ cos 7—; —COo8 %) (2 sin 1;— sin % —CoS -%:—) >0.
It is easily seen that the only significant case is when these two factors are
positivef. £.g., in Figs. vi and vii, the significant lattice points are those
which lie inside the region enclosed by the two curves.
Since we restrict consideration to finite polyhedra in four dimensions,
Rand S (as we have seen) are rotary reflections; hence their periods,  and
m, must be even. Thus the only admissible solutions are :

{4, 4|n},
{4, 63}, {6,4]3},
{4, 8/3}, {8, 4|3}

3. Derwation of the polyhedra from uniform polytopes.

Clearly, the planes or three-spaces A, X', u, u’ are primes of symmetry of
the polyhedron, and the reflections in them generate a sub-group of the
complete symmetry-group of the polyhedron. (R and S generate a different
subgroup.) The vertex C (Fig. v) is the mid-point of the edge uu’ of the
tetrahedron AA"wp’, and lies on the bisector of the opposite dihedral angle
(M').  The reflections in A, A’ transform C into B, C’, respectively, while the
reflection in p' transforms B into D. In fact, Wythoff’s construction:

leads to the uniform polytope m  whose vertices, edges,

n

* Coxeter, 2, 137.

T When the second factor is negative (and the first positive), the space is Minkowskian
instead of Euclidean.

{ Coxeter, 4, 329.
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Fig. viii: “Net” of {4, 4]3).

Fig. ix: Orthogonal projection of {4, 4|4}.
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Regular Skew Polyhedra 87

paper” plane-filling, {4, 4}, can be regarded
to infinity.) When n—4 {}e double pr
h ypeI"CUbe7 Vay and the faces of {4, 4|4} are sixteen of the twenty-four
squares of this polytope. The vertex figure of y, is a regular tetrahedron
(of edge 1/2), which can be regarded as a digonal antiprism in three ways.
Therefore one y; leads to three {4, 4[4)’s. Fig. ix shows the familiar
octagonal projection of the tessaract (in which the eight bounding cubes
are all plainly visible). In this projection, eight of the twenty-four squares
are undistorted, while the remaining sixteen are foreshortened into
rhombs. These sixteen squares are the faces of one {4, 4|4}

When [ > 4, the faces of {l, 4|n} are simply all the {l}’s of the polytope*
t,,2{n, 31, }. In the finite cases, this polytope can be described as the
common content of two equal reciprocal regular polytopes {n, 4/, n}. In
particular, #, »{3, 3, 8} or ¢, ,a, can also be described as a central section
of the five-dimensional measure-polytope y., analogous to the hexagonal
section of the cube (y;). The general measure-polytope may be defined as
the totality of points (z;, 2,, ...) for which |z,| <1; we take its section by
the prime 2 2;= 0. Thus the vertices of t1,2 24, and so also of {6, 4|3}, are
the thirty points

as the limiting form as n tends
ism becomes the tessaract or

(1: 1: O’ _11 ~1)

(permuted). (See Fig. x.) The polytope is bounded by ten truncated
tetrahedra ; the polyhedron separates these into two sets of five.

The regular 24-cell, {3, 4, 3}, may be defined as the totality of points
for which

|z + ;| < /2% (h,7=1,2,34; i<j).
Its reciprocal, with vertices - (1, 1, 0, 0) (permuted), is then defined by
|2 < 1, |2y 2yt y | < 2.
Thus the vertices of £ {3, 4, 3}, and so also of {8, 4|3}, are the 288 points
(1, v2—1, 4/2—1, 3—2¢/2), £(24/2—2, 2—+/2, 2—+/2, 0).

The polytope is bounded by forty-eight truncated cubes: the polyhedron
separates these into two sets of twenty-four. ,

* Coxeter, 4, 331.
t Or any other positive constant.
1 Threlfall and Seifert, 1, 63.
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|—4 and m >4, the polytope is toa{n, 3m, n}, which
When (= ’

. ) can be
d from the regular polytope {n, $m, n} by uniformly shmﬂ(in
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ace
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Fig. x: Orthogonal projection of {6, 4| 3}.

prisms are squares; these squares are then the faces of {4, m|n}. It
follows that the number of faces of {4, m|n} is n times the number of edges

(or plane faces) of {n, ym, n}. The vertices of to,3as, as also of {4, 6|3},
are the twenty points

(1; 0) O’ O: _1)'

* Apart from g change of scale,

this is equivalent to Mrs. Stott's exransion ” €
(Stott, 1, 9.)
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Regular Skew Polyhedra 89
The vertices of #, 5{3, 4, 8}, as also of {4, 8|3}, are the 144 points
:j—_-(\/2, 2—4/2, 0, 0), +(1, 1, v2—1, \/2—1).

Any two adjacent faces of {l, m|n} belon i

: ’ g to a bounding ¢, , {3, n}* of
the corT espond%ng polytope. The dihedral angle between then:'ils{éhere}sfore
equal to the dihedral angle of the ordinary polyhedront {}/, »}, namely

Co8 (7/n)

-
e e @nl)’

In the three-dimensional cases, (2. 3) shows that this is equal to

. €08 (m/m) . g8in (m
2 arcsin Sin (]l) ) or 2 arcsin %8;28( ( 1{ Z"))

according as the Polyhedron {l, m|n} is ordinary or skew. This explains
the fact that the infinite skew polyhedra have the same dihedral angles as
the ordinary polyhedra that are their “complements ”.

4. The symmetry-groups.

It is well known that the complete symmetry-group of the ordinary
regular polyhedron {I, m} is representable on a concentric sphere in such
a way that the fundamental region is a spherical triangle of angles =/l, 7/m,
n/2. The group is generated by the reflections in the sides of this triangle,
and has the abstract definition

R?= R,*= R?= (R, R,f = (R, By)™= (R, R;)*=1.
The rotations
R=R,R,, S=R,R,
generate a sub-group @, of order g, whose abstract definition is
(4.1) R=8Sn= (RS} =1.

This consists of all rotations that are symmetries of the polyhedron.
The complete group is derivable from it by adjoining a single reflection, and
so is of order 2g. The area of the fundamental region is (1/I+1/m—%) .
Since 2¢ such regions exactly cover the sphere, we have

(4.2) 2/g=1/1+1/m—3.

* For ! = 4, an n-gonal prism.
t+ For 1 = 4, of the n-gon itself.
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- on a sphere, we :
resenting the group oL,

Instead.toinretie curface of the ?olyhedron itself. The f]“::t a3 W)
represent it O | o right-angled triangle 010, Oy, where ey
region 18

0. is the centre of a face of the polyhedron,
3
0. is the mid-point of a side of this face, anq
, is
0, is one end of this side.
flections In the planes joining the centre of
Ry, Ry By are 10 0,, 0,0, of this triang] he po,
hedron to the sides Oz 05, 0391, P12 ngle.  Every g, cfn

9] such triangles, and then each edge of the Poly,
pelongs to four of them, and each vertex tiloj 2m. dIt is convenient, to}i'midr.o“
the triangles to be coloured alternatel,y white and black, so that ther, &reg;ne
either colour in each face, two of -ewher colour at each edge, m of eithOf
colour at each vertex, and ¢ of either oolom: altogether, Hence, i tl:r
polyhedron has f faces, e edges, and v vertices, ¢

be divided into

If=2¢e=mv=4g,

i.e.

(4.3) f=4gll e=g/2, v=g/m.
Thus (4.2) is equivalent to Euler’s theorem
(4.4) fHv—e=2.

The faces of a regular skew polyhedron can be divided into right-angled
triangles in the same manner. Any such triangle is still a fundamental
region for the complete symmetry group, but the generating operations
which transform the first triangle into its neighbours need no longer bs
reflections. Actually, R, and R, still are reflections (in the planes or three
spaces that we called A and ), but R, is the rotation through = about the
hypotenuse 0,0, (or about the plane joining this line to the centr)
Hence the sub-group generated by R and S no longer consists solely of
rotations. However, since it transforms white triangles into white and
black into black, we shall call it the intrinsic rotation-group of {I, m|n) and
still denote it by ®, and its order by g. Both groups now require an ext®
relation in their abstract definitions, on account of the multiple conne

tivity of the surface. The formulae (4.3) still hold, but (4.4) bas tole
replaced by

ftv—e=2—2p,

i



Regular Skew Polyhedra o1

where 7 is the genus; consequently (4.2) becomes

(4.5) P=3g(—1/l—1/m)+1.

This enables us to find p when g is known, b
for g in terms of [, m, n,

Actually, we can ﬁfld g in any given case by considering the group
generated by the reflections in the planes or three-spaces A, X', y, . When

we denote these reflections by L, L', M, M’ (2.1) sh hi
s defined by » (2.1) shows that this group

ut we have no simple expression

(4.6)*  LI=L7=M*=M"= (LMp= (L' 4"y
= (LLW= (MM'jim= (LYY = (L' Myr = 1.

Its fundamental region includes two of our right-angled triangles, namely
one white and one black, with a common hypotenuse. Hence it is a sub-
group of index 2 in the complete group of the polyhedron, so that its order is
gt. The rotation R,, which interchanges the white and black triangles, is

a symmetry of the tetrahedron M\’ uy’, and transforms L, L/, M, M’ into
L', L, M', M, respectively. Thus we have

L=.R1, L'=R2R1Rz, .M= 'R3’ M'= RstRz.

The complete group is derivable from (4. 6) by adjoining the involutory
operation R,. By direct substitution, its abstract definition is thus

(4.7) R*= R,®= R®= (R, Ry)'= (B, By)™ = (R, R;)*
== ('Rl Rz R3 Rz)n == l.

Finally, the intrinsic rotation-group ® can be derived from this (by

(4.8) R'— 8m— (RS):= (RS- = 1.

The fact that these relations suffice to define @ may be verified by
adjoining the involutory operation R, (which transforms E and S into their
inverses), and so reconstructing (4.7).

In the case of {4, 4|n}, the group generated by reflections is [, 2, n] or
[#] X [n], the direct product of two dihedral groups of order 2n. Hence

* Coxeter, 3.
t Therefore g is infinite when 2 sin (r/l) sin (w/m) < cos(m/n) and I, m are even.
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®, defined by*
Ri= 8= (RS)*= (RS)" =1,
is likewise of order 4n®. It hasa simple representation as a permutati()n
group of degree 2n, namely
R=(1234)(5678)(... 2n), 8= (12)(34586)(... 2p),
e.g., when n=3f,
R=(1234)(56), S=(12)(3456),
and when n=4{,
R=(1234)(5678), S=(12)(3456)(78).

In the case of {4, 63} or {6, 4|3}, the group generated by reflections ;s
(3, 3, 3], the symmetric group of order 120. Hence @, defined by

Ré— S8 — (RS):= (RS-13 =1,

is likewise of order 120; and by considering the permutations (142 3),
(15) (23 4), we see that it is again the symmetric group. Geometrically,
(3, 3, 3] permutes the five vertices of the regular simplex a,. & differs
from it in having each odd permutation combined with the central
inversion.

In the case of {4, 8|3} or {8, 4|3}, the group generated by reflections is
[3, 4, 3], of order 1152§. Hence @, defined by

Ré= 88 = (RS):= (RS-1)*=1,

is likewise of order 1152 (although it is a quite different group). The
operation

(R*8*)¢= (R,.R, R, R, .R,R; R,. R,)* = (LL' M' M)*
is the central inversion ; and, by considering the permutations

(18)(2736)(45), (16374528),

* Burnside, 1, 419 (III; a=n, b=0). .
t Miller, 1, 368 (Degreo Six, Order 36, No. 2). The relation (s,®s,)® = 1 is superfluots:

¢ Burns, 1, 208 (Order 64, No. 4). The relation (s, s,®)' = 1 is superfluous.
§ Goursat, 1, 87.
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the central quotient group

Ri= 88= (RS)?*= (RS-1)® = (R28%)° =1

yo 0an identity
\ J

ith Dr Burns’s group of order 576, No. 3*.
wil .

5 Topological cxtension of the theory: the general polyhedron
' {1, m|m).

Every regular polyhedron can be interpreted topologic.ally as a regul.ar

in the sense of Brahanat, the faces of the polyhedron being the countn'es
. ap. 1f the faces are l-gons, m ab each vertex, the map may be built
Ofth: u; 1}: : face, by lettering the vertices, and calling the faces ABC...,
K%Eac anyd soon. E.g.,whenl=4and m=3,we have the “ topological
cube”’

ABCD, ABEF, ADGF, BCHE, CDGH, EFGH.

If this abstract construction is carried on in such a way that new letters are
introduced whenever possible (z.e., using only the number of sides of the face
and the number of faces at a vertex), then the map is automatically regular,
and forms a simply-connected surface, finite or infinite according as

1/14+1/m > or < }.

Tt can be metrically realized as a partition of the sphere, or of the Euclidean
or hyperbolic plane, into regular l-gons; hence no confusion can arise by
using the symbol {I, m}.

Any other regular map of l-gons, m at each vertex, can be derived from
{1, m} by identifying certain edges. The intrinsic rotation-group &, of order
g = If =2¢ = mv, may be defined topologically as a permutation group on
the edges of the map ; namely, as generated by R, which cyclically permutes
the edges of one face, and S, which cyclically permutes the edges at one
vertext, It is clearly a factor group of the rotation-group of {I, m}, whose
abstract definition is (4.1). The identification of a pair of edges of {I, m}
can at once be interpreted as an extra relation between R and S, and will
necessitate the identification of every other pair that are similarly related.

.We may, for instance, identify two edges belonging to a chain of edges
which leaves, at each vertex, two faces on the left (and m—2 on the right).

* Burns, 1, 210. The central quotient group of [3, 4, 3], on the other hand, is No. 2.
t Brahana, 1, 269.

+
B S:lgm gonerators R, § differ trivially from Brahana's S, T'; in fact, our R, S aro his
) » while his S, 7' are our R, RS. Also our 1, f are his k, n.
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Tt is easily seen (Fig. xi*) that the operation RS takes ug One g
t 1s easlly S 4

cuch a chain. Thus the relation

tep al()ng

(RS =1

corresponds to the identification of edges which differ by 4, steps.

Fig. xi: R¥=S°= (RS)*=1. Fig. xii: S8 =72 (ST)3 =1,

We now have an interpretation for the symbol {/, m|n} regardless of the
parity of land m. §4 shows that this agrees with our previous interpreta-
tion in the case when L and m are both even.

In a family of abstract groups with various periods assigned to certain
fixed combinations of generators, it usually happens that the greater

periods correspond to greater orderf. Accordingly, we should expect the
criterion

(5.1) 2 sin (m/l) sin(=/m) > cos (/)

(which precisely determines the finiteness of the polyhedron {I, m|n}

" In the spocial case when I = 3, (4. 1) implies (RS-t )" =1. But when I and m are
both greater than 3, the period of RS- ig infinite. This follows from (1.1), by considering

the Minkowskian polyhedron {1, m}; for, if 1 >4 and m > 4, then cos(x/n) > 1, and /1
18 & hyperbolic angle,

t This is merely a working rule, and not g demonstrable theorem, as the following
Z:arzpl'e: shows ; although {6, 613} is infinite, we shall gee later that {6, 7|3} and (7, 713}
e finite,
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] and m are even) to retain some significance when the parity of / and
Wh.en restricted. Actually, we find that it fails in two respects.
" ls}g“'ujgt for certain values of I, m, n, satisfying the criterion (as well as for

l; ‘ialues violating it), the group collapses, in the sense that the rela-
c.ertal (4.8) imply E=S8=1. E.g., there is no polyhedron {4, 5|3}.
o’ dl ; for certain values of I, m, n, violating the criterion, the group
secor} s);inite. In fact, the order of the group, considered as a function of
rema;n has a tendency to take, when 7 or m is odd, a smaller value than that
l’,z;;h’we should expect by interpolation from the values when ! and m are
i n. (Since the value when /and m are even is determined by the volume
2}76& .spherical tetrahedron, this interpolation could be given a precise
meaning in terms of Schléfli functions.) How«?ver, we can say thu?: 1{)1»67?-
ever the group s infinite, the criterion is violated, i.e., Whenc?ver tl.1e cntex"l.on is
satisfied, the group either is finite or collapses. In Figs. vi and vii, we
mark the known finite polyhedra as O’s, the known infinite polyhedra a;s
dots, and the known cases of collapse as crosses. We observe that the O’s
are all inside or “ just outside ”” the region of validity of the criteria. (Un-
marked lattice points correspond to groups which have not yet been
investigated.)

When [/ or m = 3, we must have n =m or I (respectively); any other
value of n causes collapse (although, if the assigned value of 7 is a multiple of
its proper value, the collapse will be merely partial).

When m > 3, and | and n are both even (or when I > 3, and m and » are
both even), the criterion (5. 1) holds perfectly ; e.g., {4, 7 |4} and {5, 6|4} are
infinite. For (4.8) can be written in the form

(5.2) Sm=T*= (8T)= (82T)»=1,

which has been thoroughly investigated elsewhere* in the case when I and
n are even.

By putting $% in place of S in (5.2), we see that {l, 5|n} and {n, 5|1}
have the same group. 1In particular, {5, 5|3} has the same group as {3, 5|5}
or {3, 5}, namely the icosahedral group. {5, 5|3} can, in fact, be realized
metrically as the great dodecahedront {5, 3} (Fig. xiii). All other polyhedra

{n, 5/3}, {5, n| 3} are impossible, since they would have the same group as
{3, 5| n}.

* Coxeter, 5, 284.

t Cf. Brahana and Coble, 1, 14 (Fig. VII), The other three Kepler-Poinsot polyhedra

give nothing fregh. In fact, {3, 5), {3, 3}, {8, 3}, are topologically identical with {5, %),
{5, 8}, (3, 5}, respectively.
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Apart from
{3, ml n}; {m: 3'7&} (n = m))
{n, 5|8}, {5,%|3} (n#5),

there are no known cases of collapse.

Fig. xiii: The great dodecahedron, {5, 5|3}.
The remaining polyhedra that satisfy (5.1) are
{4, 5|4}, {4, 7(3}, {4, 5|5},

and their reciprocals. The last of these has, of course, the same group as
{5, 5|4}, which does not satisfy (5. 1).
For {4, 5|4} and {5, 4|4}, @ is*

S5=T2= (ST) = (S2T)i=1,

of order 160. {4, 5|4} can be realized metrically in five dimensions, by
taking half the squares of the measure-polytope ys. Fig. xiv shows an
isometric projection of the vertices and edges of ¥s, in which the 80 squares
appear as rhombs of two kinds: 40 of angle 17, and 40 of angle 27. Either

* Coxeter, b, 284.
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are projections of the faces of a {4, 5|4}. (This partition of the
but depends on the plane of projection.)

got of 40
g0 squares is not really unique,

Fig. xiv: Orthogonal f)mjection o {4, 5|4}, YO gd.? 6
For {4, 5|5}, {5, 4|5}, and {5, 5|4}, G is jf z;l;if?;
e bolEs

88 =Tr=(ST)*=(S:T)5=1
RS=85=(RS) = (RS-1)4=1,

or*

;l‘lie simple group of order 360 (i.e., the alternating group of degree six)
: g. xt\)/ 1shows a conformal representation of {4, 6} qua partition of the
yperbolic plane, with letters to indicate the identificati
3 cations th
{4, 6(3} (cf. Fig. viii). w4 produce

*Todd and Coxeter, 1, 31 (5); Brahana, 1, 274.
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o8
por (4,7/3) and {7, 43}, 6 is®
g1 =T2=(ST)*=(8T)*=1,

der 168. This is a special case of

imple group of O
the simp S7=T2=(ST),=(SzT)3=1'

P F

Fig. xv: The topological polyhedron {4, 6|3].

On putting R® for S, this becomes
== (RTP=(RAT)=1,
or, since R2TR= R(TRT)'= RT-1R'T,
R'=T?= (RT)*= (RT*R1T)=1.

*Burnside, 1, 422. S; = S, S, = 7.
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In the form
S3=T2= (ST) = 0 e STy=1,

1 *
< has been extensively studied by Brahana and Sinkov™.

. u
g d then [ = 7, we see that, for the three polyhedra

this £2 ]=6an

By putting
(6,7/3}, {7, 6/3} {7 7|3}

roup of order 1092. . ) ‘
gin Fig. vi, one pair of lattice points that are only just

, namely the points corresponding to the polyhedra

@ is the simPple
There remain,
outside the region

(4,93, {9,4[3}

After enormous labour, I succeeded in enumerating the 272 co-sets of a

eyclic subgroup of order 9, thus proving that the group
SP="T2= (8ST)*= (S* TP =1

is of order 2448. Then Sinkov completed its identification with the simple
group of that order, by citing the linear fractional substitutions

o fpEae = (— 1)
S_(7x+4>, T = (—z) (mod 17)

With the help of (4.3), we can now write out Table I. In describing
the various groups, we use the symbols S, and 4, to denote the symmetric
and alternating groups of degree 7.

6. A further extension: the polyhedron {g;, m|4z, 3, i

In §5, we derived the topological polyhedron {I, m|n} from {, m} by
identifying two edges that belong to a certain ‘‘ chain”’. Wemay generalize
our results by using a chain of edges which leaves, at each vertex, (say)
j on the right (and m—j on the left). When j=1 this is a face; when
j=2itisa “hole”. We define a generalized skew polyhedron

(6.1) {@1, m| g, g3, ---}

* Brahana, 2; Sinkov, |.
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steps along the j-th chain. In the p
0

by identifying pOintS. q;
case we would allow j to take all Val}les from 1 to [4m]. 1In ce St, genery)
cuch a skew po]yhedron can be realized metrically in Eucli de;tam Cages
n Spa0e e

of

m (or fewer) dimensions. IS vertex figure is then a skew
gides, first diagonals, second diagonals, ete., are of lengths "80N Whg,

9 coS (77/‘11)7 2 cos (m/qs), 2 cos (7/qs),

Since these generalized skew polyhedra do not necessari

rs, it is convenient to replace R by T'S-1, g :?ly( oceur iy,
: n (5.2)

- A

reciprocal pai
i makes it clear that the group takes the form

glance at Fig. xi
szTzz(SjT)'Ij:l (j=l, 9 )

or, in terms of R and S,

Ru = Sm= (RS)2= (R8)ee= (RS)b=..=1.
When all the ¢’s are even, the only finite polyhedra of this kind are*
{4, m|4Um-1}
and {4, m|4™2, 2p} (m even).

These can both be realized metric i i
ally in Euclidean m-s
§ -space, th .
squarefj from t.he measure-polytope y,,, and the latter by squ e former by
generalized prism (or * rectangular product”) of 3m 2p ggnares from the
-gons :

[{2p}, {2p}, ...] or {2p}im

The polyhedron {4, m|
; 4[im]—1} with _
(squares), 2m-1 , with g=2mm, has 2m-2
quy ) S)A dam edgés, and 2™ vertices (viz., all the edges a dm fa.ces
m=”‘5' w e n.gly, its genus is 2m-3(m—4)41. (The cg ol
" :efe considered earlier. See Figs. ix, xi ases m=:1 and
(4, m| 42 2p} (m even) can be ded s 'XW.) Tie gpactioe -
g= (2p)imm. educed similarly from the fact that
The vertex fi
kinds of diagona%su;i:ff{f , m|4lim-1} ig a skew m-gon whose sides and all
regular simplex o \/02 ength 4/2. In fact, the vertex figure of y,, is 2
m-14/2, whose Petrie polygont is the vertex figure Zf the

* Coxeter, b, 2
= » Oy 83, (4 ) /- .
t Coxeter, 1, 203. ), (4.5). We write 4~ for a row of n 4’s.
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[yhedron. The vertex figure of {4, m |4 2p} (m even) differs from
;:'Sy in having all pairs of opposite vertices distant 2 cos (/2p). When We
» this becomes the Petrie polygon of the cross-polytope

ke infinite,
s v/ 5 Now, this cross-polytope is the vertex figure of 8jm+1, the net of
P i.e., the infinite polytope whose vertices are all the

easure-polytopes, : i
izttice points in 3m dimensions. Hence, writing 7 for 3m, we have the

infinite skew polyhedron
{4, 2r|48,

whose faces belong t0 8,43 This can be regarded as & genera,liza.tion of

4, 4} and {4, 6]4}. o
{ T}here is also a generalization of {6, 3} and {6, 4|4}: the infinite

olyhedron
o {6’ ml,4[lm]-—1}.

Tts faces are all the hexagons of the uniform (m—l)-djmensional space-
filling* whose graph consists of an m-gon with every vertex ringed. The
remaining plane faces of this space-filling are squares, which form, when
m = 5, another infinite polyhedron:

(4, 5|6}

When the parity of the ¢’s is unrestricted, very little is known about
the possible polyhedra (6. 1). One line of investigation is suggested by

the fact that

{6, 6|3, 4}
can be realized metrically by taking all the equatorial hexagons of all the
bounding cuboctahedra of the « truncated tessaract’ f;y,. The corre-
sponding group is simply

§o=Tr= (TP = (ST =1,

since these relations imply (S7')¢=1. This is the hyper-pyritohedral
groupt [(3, 3)’, 4], of order 192, since it is derivable from [3, 3, 4] by
putting

S= R1R2R4, T-_—-— .RlRa.

* Coxeter, 4, 334.
+ Coxeter, b, 295.
¥ L&,

=Ry = R = R¢ = (R Ry)* = (B By’ = (Rs R = (R Ry)* = (B, By = (R, BT = 1.

58



102 TWELVE GEOMETRIC ESSAYS

The hexagons cut one another diagonally, prc?ducing “false.verticc.s"_
This polyhedron, therefore, is a kind ?f ge.nerahzed I.{epler-POI.nsot poly.
hedron. Four-dimensional space admits nineteen reciprocal pairg of such
skew star-polyhedra; but they lie beyond the scope of the present worl

In conclusion, we mention the case when none of the ¢’s are Specifie
save ¢, and gy, i.c., the case of the polyhedron*

with g-gonal “second holes”. The group is

(6.2) == (ST) = (T =1,
or Ri=80= (B8)f= (RS2)t=1,
or Bl=1= (RT»=(R¥*TRET)r=1.

When [= 3, this last definition becomest
Ri=T%= (RT)"= (R1TRT)=1.

In particular, one of Brahana’s results} shows that {3, 8/, 6} is infinite.
When m = 7, we write S2 for S in (6.2), obtaining

§7=T?= (8T)1= (S2T) = 1.

Thus {1, 7|, g} has the same group as {q, 718. {8,7], 6} and {3,7|,7)
provide the extraordinary phenomenon of two polyhedra which have the
same number of vertices, edges, and faces (and therefore the same genus),
and the same group, but which still are distinct,

When m is even, R and §2 generate a self-conjugate sub-group of
index 2:

R'=8im= (RS} = (RS- =1,

so that, when we put 8,=R, s,= RS,

8 =8l = (s, 8,)im = (5,28,)0= 1.

* m=3 implies g=2; m —4 implies ¢ =; and {l, 5|, g} is the same as {I, 5|g}-
t Brahana, 2.

+ Brahana, 3, 901.
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s likely that the only non-trivial cases when this group is finite

It seem . B
G. A. Miller*, and one immediate consequence of

are thoseé considered by
these, namely :
l = 3’ %m p— q = 4’

= 3’ %m —— 4, q= 5,
l= 3: %m — 5’ g 4’
l = 4, %m — q = 3.
In the first case, Miller gives the permutations
8, = (abc) (def), 8= (aeh) (cdg)-
Since S transforms s; into s,, and 8% = S’ = 8, 8,, we have
R = (acb) (dfe), S = (agbcdehf).

Hence the group of {3, 8|, 4} is the extended 168-group’’t, i.e., the
group of all linear fractional transformations modulo 7. By putting
s,/ =A8', s, = 8~ R, we obtain the 168-group itself in the alternative form

5" =8,/ = (8,8 )= (8,28 =1,
with s,/ = (abdh) (cefy), 85’ = (ahfd) (boge).
.In this case, s, is transformed into s’ by (afcebd); so the group of {4, 6/, 3}
1s again the extended 168-group.

l?u Val has pointed out that the polyhedron {3, 7|, 4} can be metrically
re'amhzed (albeit singularly) in seven dimensions. Its faces are the fifty-six
triangles of the regular simplex a,; its edges and vertices are those of the

simplex, each counted three times. The six triangles that meet at an
edge of a, have to be paired in a special manner.

* Miller, 2.
: t Van der Waerden calls this group PGL (2, 7), PSL (2, 7) being the 168-group itself,
which Dickson calls LF(2, 7).
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TABLE 1. Finite polyhedra {I, m|[n}.

.
e v P ®
Polyhedron / g
0 A ~LF 2! 3 D
{3, 3]3) = (3, 3) 4 . - A Sl 12
(3, 44) = (3, 4) 8 1 } 8¢ =
' 6 12 8 0 2
{4,3|4)={43) A s 0
@3,6/5)=(306 | 20| 3 I
(5, 3|6} = (5, 3) 12 | 30 | 20 " "*‘W“" (2, 8° 60
5,69 =(58 | 12 [ 30| 121 4
(4, 4|n} nt 2n? vy dnt
{4, 5|4) 40 80 82 e D 16¢
5 |) ) )
{5, 4]4) 32 80 40 " Y -
{4, 8]3) 30 60 20 \ 5, A 8 -
0 30 6 |/ B
s - 24 24 10 |\
{4,7|3) 42 LF(2,7) 1
{7, 4|3} 24 84 42 10 |f 68
{4, 5|5} 90 180 72 10 ]
(5, 4|5} 72 180 00 10 |+ As 360
{6, 6|4} 72 180 72 19 J 2
{4, 8|3) 288 576 | 144 B N\ (F -
{8, 4|3) 144 576 | 288 73 |) 4 152
{6, 7|3} 182 546 | 156 | 105
{1, 6|3} 156 546 | 182 | 105 LF(2, 13) 1092
{7, 1|3} 156 546 156 118
{4,9]3) 612 | 1224 | 272 | 171 } LF@. 17 ;
{9, 4]3) o72 | 1224 | @12 | 11 | EFEID 2448
{7, 813) 1536 | 5376 | 1344 | 1240 z poe
18, 7131 1344 | 5376 | 1536 | 1249
TABLE II. Finite polyhedra {l, m|, g).
Polyhedron J e v P © g
{3, 6], g) 2" 3¢* q 1 64*
{3, 24|, 3) 2q 3q* 37 | #Heg—1)g—2) 6g*
{3, 7/, 4} 56 B4 24 3 LF(2,17) 168
{3, 8, 4} 112 168 42 8 \
(4, 6], 3) 84 168 | 56 15 [FEEET) 336
{3, 7], 6) 364 546 156 14 \ .
3,7),7) | 364 | 546 | 126 14 RN | e
(3, 8, 5) 720 | 1086 | 270 46 \ _—
{3,10[, 4y | 720 | 1080 | 216 73 J
18, 61, 3] # | © 2 9 Ay X 8y 120
(3, 111, 4] 224 2038 552 241 Lra %5 i
13, 9], 5) 12180 18270 4060 1016 LP(2,20) x Ay | 306540
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