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“The art of doing mathematics consists in
finding that special case that contains all
the germs of generality” - David Hilbert

Over the past few decades, a growing group of
“hypercubists” have been discovering analogues of Ru-
bik‘s cube, traversing a wide range of mathematical
ground. Solving puzzles is a core pastime, but this
group is about much more. The explorations have
been a microcosm of mathematical progress. Find-
ing and studying natural analogues provides a rich
way to approach varied topics in mathematics: geom-
etry (higher-dimensional, non-Euclidean, projective),
group theory, combinatorics, algorithms, topology,
polytopes, tilings, honeycombs, and more. Elegance
is a core principle in the quest.

(a) “Megaminx” uses a do-
decahedral shape rather than
a cube.

(b) The “Helicopter Cube”
twists around edges instead
of faces.

Figure 1: We begin abstracting Rubik’s cube as soon as
we change some property.

Those exposed to the twisty puzzle community
know there are many properties of the classic 3x3x3
Rubik’s Cube we can change to make new and interest-
ing puzzles, for example by altering the shape or the
twist centers as in Figure 1. The hypercubing group
began by changing a more abstract property, namely
the dimension. Don Hatch and Melinda Green wrote
an exquisite working 4-dimensional 3x3x3x3 (or 34)
analogue, which they called MagicCube4D. Using
dimensional analogy, every property of this puzzle is
upped a dimension. Faces, stickers, and twisting are
3D rather than 2D. Using a central 4D → 3D pro-
jection, we see the hyperpuzzle as if you are looking
into a box, with the nearest face hidden. Figure 2 puts
the 3D and 4D puzzles side-by-side to emphasize the
analogy.

(a) The 33, projected so
a 2-dimensional “flatlander”
sees 5 of the 6 cube faces.

(b) The 34, projected so a
3-dimensional being sees 7
of the 8 hypercube faces.

Figure 2: Dimensional analogy and projection tricks can
help us understand higher dimensional Rubik’s Cubes.



The 33 Rubik’s Cube has 6 × 32 = 54 stickers
that can live in a mind-boggling 4.325× 1019 possi-
ble states. The hypercubical 34 has 8 × 33 = 216
stickers and the number of possible puzzle positions
explodes to an incomprehensible 1.756× 10120. Cal-
culating this number is a challenge that will test your
group theory mettle!

“In that blessed region of Four Dimen-
sions, shall we linger on the threshold of
the Fifth, and not enter therein?” - Edwin
Abbott, Flatland

The group didn’t stop there. In 2006, a working
5-dimensional puzzle materialized with 10 × 34 =
810 hypercubical stickers and 7.017× 10560 states,
pushing the boundaries of visualization. The picture
on the screen is effectively a shadow of a shadow
of a shadow of the 5D object. Nonetheless, as of
mid 2017, around seventy individuals have solved this
puzzle. In June 2010, Andrey Astrelin stunned the
group by using a creative visual approach to represent
a 7-dimensional Rubik’s Cube. Yes, it has been solved.
Can you calculate the number of stickers on the 37?
You may also enjoy using dimensional analogy to
work out the properties of a 2-dimensional Rubik’s
Cube. What dimension are the stickers?

Figure 3: A shadow of a shadow of a shadow of the 35.
Stickers are little hypercubes.

Of course we can play the same game of chang-
ing the shape in higher dimensions to yield a panoply
of additional puzzles. There are 5 Platonic solids in

3 dimensions, but 6 perfectly regular shapes a dimen-
sion up, and you can attempt to solve twisty puzzle
versions of all of them! Figure 4 shows one of the
most beautiful in its pristine state.

Figure 4: Magic120Cell, or the “4D Megaminx” has 120
dodecahedral faces. It derives from the 120-Cell, one of 6
Platonic shapes in 4 dimensions.

Shapes in arbitrary dimensions are called poly-
topes, or polychora in 4 dimensions. In addition to
the regular polychora, there are many uniform poly-
chora and quite a few have been turned into twisty
puzzles. Uniform polychora can break regularity in
various ways. They may have multiple kinds of 3D
faces or the faces may be composed of uniform (a.k.a.
Archimedean) polyhedra.

“For God’s sake, I beseech you, give it
up. Fear it no less than sensual passions
because it too may take all your time and
deprive you of your health, peace of mind
and happiness in life.”

No, these were not desperate pleas to a hypercu-
bist about excessive puzzling adventures. Such were
the words of Farkas Bolyai to his son János, discour-
aging him from investigating Euclid’s fifth postulate.
János continued nonetheless, which led him into the
wonderful world of hyperbolic geometry. We also did
not heed the advice.

Let’s use topology to abstract away a different
property of Rubik’s Cube - its cubeness. To do this,



we project the cube faces radially outward onto a
sphere. Mathematicians label the sphere S2 because
they consider it a 2-dimensional surface rather than
a 3-dimensional object. Notice in Figure 5a that al-
though the familiar cubeness is gone, all of the impor-
tant combinatorial properties remain. Furthermore,
what were 2-dimensional planar slices of the Rubik’s
cube are now 1-dimensional circles on the spherical
surface. A twist simply rotates the portion of the
surface inside one of these “twisting” circles.

In short, we are considering the Rubik’s cube as
a 2-dimensional tiling of the sphere by squares, sliced
up by circles on the surface. Why? Because we can
then consider other colored regular tilings and a huge
number of new twisty puzzles become possible, some
living in the world of hyperbolic geometry!

(a) Radially projected to the
sphere, S2.

(b) Stereographically pro-
jected from the sphere to the
complex plane.

Figure 5: The Rubik’s cube viewed as a 2-dimensional
tiling on a surface.

In 2 dimensions, there are three geometries with
constant curvature: spherical, Euclidean, and hyper-
bolic, and each can be tiled with regular polygons.
These geometries correspond to whether the interior
angles of a triangle sum to greater than, equal to, or
less than 180 degrees, respectively. The Schläfli sym-
bol efficiently encodes regular 2-dimensional tilings in
all of these geometries with just two numbers, {p, q}.
This denotes a tiling of p-gons in which q such poly-
gons meet at each vertex. For example, {4, 3} denotes
the tiling of squares with three arranged around each
vertex, i.e. the cube. The value of (p − 2)(q − 2)
determines the geometry: Euclidean when equal to 4,
spherical when less, and hyperbolic when greater.

Euclidean geometry is the only one of the three
that can live on the plane without any distortion. A
lovely way to represent the others on the plane is via

conformal, or angle preserving, maps. Stereographic
projection is a conformal map for spherical geometry.
Its analogue for hyperbolic geometry is the Poincaré
disk, which squashes the infinite expanse of the hyper-
bolic plane into a unit disk. These models have many
beautiful properties and the isometries (transforma-
tions which preserve length) of all 3 models can be
described via a simple mathematical expression that

(a) Torus Rubik’s cube on the
Euclidean universal cover.

(b) Torus Rubik’s cube
mapped to the Clifford torus.

(c) Klein bottle Rubik’s cube
on the Euclidean universal
cover.

(d) Klein bottle Rubik’s cube
mapped to a Lawson Klein bot-
tle.

(e) Hemi-icosahedron (or real
projective plane) Rubik’s cube
on the spherical universal
cover.

(f) Hemi-icosahedron Rubik’s
cube mapped to the Bryant–
Kusner parametrization of
Boy’s surface.

Figure 6: Example tiling analogues. Note that there are
other tilings that can also map to the surfaces on the right.



acts on the complex plane: the Möbius transforma-
tions.

f(z) =
az + b

cz + d

You may have noticed that we have with another
problem to make puzzle analogues workable for Eu-
clidean and hyperbolic tilings. Spherical tilings are
finite, but tilings of the other two geometries go on
forever. To overcome this final hurdle, we take a fun-
damental set of tiles and identify edges to be glued
up into a quotient surface. This serves to make the
infinite tilings into finite puzzles. Figure 6 show but a
few examples. We can even glue up a subset of tiles
on the sphere, as in Figure 6e.

One of the crown jewels of this abstraction is
the Klein Quartic Rubik’s cube, composed of 24 hep-
atagons, three meeting at each vertex. It has “center”,
“edge”, and “corner” pieces just like Rubik’s cube.
The universal cover is the {7, 3} hyperbolic tiling,
and the quotient surface it is living on turns out to be a
3 holed torus. This results in some solution surprises;
if you solve layer-by-layer as is common on the Ru-
bik’s cube, you’ll find yourself left with two unsolved
faces at the end instead of one.

Figure 7: Klein Quartic Rubik’s cube on the hyperbolic
universal cover. The quotient surface is a 3 holed torus.

All of these puzzles and more are implemented in
program called MagicTile. The puzzle count recently
exceeded a thousand, with literally an infinite number
of possibilities remaining.

“We live on an island surrounded by a
sea of ignorance. As our island of knowl-
edge grows, so does the shore of our ig-
norance.” - John Archibald Wheeler

There are quite a few intriguing analogues that
I have not been able to describe here. Let me just
mention two of my favorite abstractions, shown in
Figure 8. The first is another astonishing set of puz-
zles by Andrey are based on the {6, 3, 3} honeycomb
in 3-dimensional hyperbolic space, H3. The faces
are hexagonal {6, 3} tilings, with 3 faces meeting at
each edge. Gluing via identifications serve to make
the underlying honeycomb finite in two senses: the
number of faces and the number of facets per face. If
we take a step back and consider where we started,
this puzzle has altered the dimension, the geometry,
and the shape compared to the original Rubik’s cube!

The second is a puzzle written by Nan Ma based
on the 11-cell, an abstract regular polytope composed
of eleven hemi-icosahedral cells. You might consider
this a higher dimensional cousin of the Boy’s surface
puzzle we met earlier. The 11-cell can only live geo-
metrically unwarped in ten dimensions, but Nan was
able to preserve the combinatorics in his depiction.

With so many puzzles having been uncovered,
one could be forgiven for suspecting there is not much
more to do. On the contrary, there are arguably more
avenues to approach new puzzles now than ten years
ago. For example, there are no working puzzles in
H3 composed of finite polyhedra. There are not yet
puzzles for uniform tilings of euclidean or hyperbolic
geometry, in 2 or 3 dimensions. Uniform tilings are
not even completely classified, so further mathemat-
ics is required before some puzzles can be realized.
Melinda has been developing a physical puzzle that
is combinatorially equivalent to the 24. The idea of
fractal puzzles have come up, but no one has yet been
able to find a good analogue.

In addition to the search for puzzles, countless
mathematical questions have been asked or are ripe
for investigation. How many permutations do the
various puzzles have? What checkerboard patterns
are possible? Which nd puzzles have the same number
of stickers as pieces? How many ways can you color
the faces of the 120-Cell puzzle? What is the nature of
God’s number for higher dimensional Rubik’s cubes?
The avenues seem limited only by our curiosity.



(a) Magic Hyperbolic Tile {6, 3, 3}. This is an in-space view
of the puzzle in 3-dimensional hyperbolic space.

(b) Magic 11-Cell. Here we see the puzzle scrambled.

Figure 8: Two extremely exotic Rubik’s cube abstractions.

Furthur Exploration

MagicCube4D website
Contains links to all the puzzles in this article and the
hypercubing mailing list.

Burkard Polster (Mathologer) produced wonderful
introductory videos to MagicCube4D and MagicTile.
Cracking the 4D Rubik’s Cube with simple 3D tricks
Can you solve THE Klein Bottle Rubik’s cube?
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